US009325449B2

a2 United States Patent 10) Patent No.: US 9,325,449 B2
Birrittella (45) Date of Patent: Apr. 26, 2016
(54) LANE ERROR DETECTION AND LANE 2005/0149795 Al* 7/2005 Manonic...cccovoverenn 714/726
REMOVAL MECHANISM TO REDUCE THE 25000256251 Al* 102008 Fahrctal. - 7105305
PROBABILITY OF DATA CORRUPTION 2008/0276032 AL1* 11/2008 Tida etal. ...oooooocivcrrres 710/316
. 2010/0005345 Al 1/2010 Ferraiolo et al.
(71) Applicant: Intel Corporation, Santa Clara, CA 2010/0005375 AL* 1/2010 Delletal. cooooeecrvcreirirns 714/807
(as) 2011/0022935 Al 1/2011 McDaniel
2013/0306276 Al 11/2013 Duchesneau et al.
(72) Inventor: Mark S. Birrittella, Chippewa Falls, W1
us) OTHER PUBLICATIONS
(73) Assignee: Intel Corporation, Santa Clara, CA International Search Report and Written Opinion received for PCT
(as) Patent Application No. PCT/US2014/068931, mailed on Feb. 26,
2015, 15 pages.
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35 * cited by examiner
U.S.C. 154(b) by 106 days.
(21) Appl. No.: 14/099,345 Primary Examiner — Guy Lamarre
) (74) Attorney, Agent, or Firm —Law Office of R. Alan
(22) Filed: Dec. 6, 2013 Burnett, P.S.
(65) Prior Publication Data
US 2015/0163014 A1~ Jun. 11, 2015 (57) ABSTRACT
(51) Int.CL Method, apparatus, and systems for detecting lane errors and
HO03M 13/00 (2006.01) removing errant lanes in multi-lane links. Data comprising
GO6F 11/10 (2006.01) link packets is split into a plurality of bitstreams and trans-
H04L 1/00 (2006.01) mitted over respective lanes of a multi-lane link in parallel.
HO3M 13/09 (2006.01) The bitstream data is received at multiple receive lanes of a
(52) US.CL receiver port and processed to reassemble link packets and to
CPC ..o HO4L 1/0045 (2013.01); HO3M 13/09 calculate a CRC over the data received on each lane. The link
(2013.01); HO4L 1/0061 (2013.01) packets include a transmitted CRC that is compared to a
(58) Field of Classification Search received CRC to detect link packet errors. Upon detection of
CPC . GO6F 11/1076; GOG6F 3/0619; GOG6F 3/0647, a link packet error, per-lane or per transfer group CRC values
GO6F 3/0689 are stored, and a retry request is issued to retransmit the bad
USPC oo 714/807, 758 packet. In conjunction with receipt of the retransmitted
See application file for complete search history. packet, per-lane or per transfer group CRC values are recal-
culated over the received data and compared with the stored
(56) References Cited per-lane or per transfer group CRC values to detect the lane
U.S. PATENT DOCUMENTS causing the link packet error.
4,442,502 A * 4/1984 Friendetal. 710/316

2001/0022786 Al*

9/2001 Kingetal. ...

30 Claims, 31 Drawing Sheets

108” 134

116
(" Multi-Node Ptatform

High Radix Switch

Switch

Additional Links and Switches

142

US 9,325,449 B2

Sheet 1 of 31

Apr. 26,2016

U.S. Patent

201 31
/\J [old
;; _
Juqed LEL
get
(s)1ebeuepy Aemaren
ouqey omv e

arl

P

SOUONIMS PUE SHUIT [BUOIIPPY

™ R
youms | youms | (" youms xipey ybiy)
uger] . t8E] g teein] o teeiAT o veil~] 80t (dAL) 6€L~{|| ,vOI
M8l ¢ Skt < p ™
.. 14H 14H 4H
EEE
CR O RE & & *mhco G o
QH P..WI—HI—.;
(pareibaul) 4 9poN L apoN
9108
E_c:mi SRON sibdls o E._o:mA_M_ m...vowmw_msm
021 \ 9 E‘_otm_n_.m_uoz._::E . & ”
—/ e
9t1 901 —J

U.S. Patent Apr. 26,2016 Sheet 2 of 31 US 9,325,449 B2

4 I 4 N
L4 Transport g > Transport

(N / N\ 4
L [LinkFabric | | Fabric Packets »K Link Fabric)

9 Sub-Layer) (2 Flits - MTU/84 Flits) |_ Sub-Layer)

L2 .

115 (" Link Transfer | Link Transfer Packets (Link Transfer

. Sublayer (16 Fiits) . Sublayer)

‘ A - A
L1 Physical (PHY) |la—Xe2%8% 126 16X | ppucical (PHY)

. J/ AN S

Fig. 2

«“VLO Head th (Length 4) /
% / s /VLO Body Filt*’ o e
~°‘VL1 Head th (Length 4) . VL1 interleaves VLO

2

Back to the remaining VLO packet flits

U.S. Patent Apr. 26,2016 Sheet 3 of 31 US 9,325,449 B2

fa jesiE e

Byte 0

00 (TYP)

Byte 1
G
1
32

Byte 2

7

Fiit Payload

=

P
o

Byte 3

PR

il

Flito

Flit 1

Flit 2

P

3
6
Head Flit Fields
7/ Body

Fig. 4

-

Flit 15
Fig. 3

jBody Flit jF‘a‘yloadg , _ <

s

Byte 4

Byte 5

Byte 6
302
400

Byte 7

U.S. Patent Apr. 26,2016 Sheet 4 of 31 US 9,325,449 B2

Flit 0[64:0
Flit 1[64:0
Flit 2[64:0
Flit 3[64:0
Flit 4[64:0

[

[

[

[

Flit 5{64:0

Flit 6[64:0
Flit 7[64:0
Flit 8[64:0
Flit 9[64:0
Flit 10[64:0]
Flit 11[64:0]
Flit 12]64:0]
Flit 13[64:0]

]

]

]
]
]
]
]
]
]
]
]
]

Flit 14]64:0
Flit 15[64:0

. LCRC[15:0]

Fig. 5

U.S. Patent Apr. 26,2016 Sheet 5 of 31 US 9,325,449 B2

Flit 0[64:0
Flit 1{64:0
Flit 2[64:0
Flit 3[64:0
Flit 4[64:0
Flit 5[64:0
Flit 6[64:0
Flit 7[64:0
Flit 8[64:0
Flit 9[64:0
Flit 10[64:0
Flit 11[64:0

]
]
1
]
!
1
]
|
]
1

Flit 12[64:0
Flit 13[64:0
Flit 14]64:0
Flit 15[64:0

1
]
]
|
!
1

LCRC[13:0] C[1:0]

Fig. 6

U.S. Patent

Apr. 26,2016

Sheet 6 of 31

US 9,325,449 B2

Flit 0{64:0

Flit 1{64:0

Flit 2[{64:0

Flit 3{64:0

Flit 5{64:0

Flit 6[64:0

Flit 7{64:0

]
]
]
]
Flit 4[64:0]
]
]
]
]

Flit 8{64:0

[
[
[
[
[
[
[
[
[
[

Flit 9[64:0]

Fiit 10[64:0]

Flit 11[64:0]

Flit 12[64:0]

Flit 13[64:0]

Flit 14[64:0]

[
[
[
[
[
[

Flit 15[64:0]

LCRC3[11:0]

LCRC2[11:0]

LCRG1[11:0]

LCRCO[11:0]

Fig. 7

U.S. Patent

Apr. 26,2016

Sheet 7 of 31

US 9,325,449 B2

Distinguishing Controf Flit 0[64:0]

Reserved 1[64:0

Reserved 2{64:0

Reserved 3[(64:0

Reserved 4{64:0

Reserved 6[64:0

Reserved 7{64:0

[
[
[
[
[
[
[
[

Reserved 8[{64:0

]
l
1
!
Reserved 5[64:0]
]
]
]
1

Reserved 9{64:0

Reserved 10[64:0

Reserved 11[64:0

Reserved 13[64:0

Reserved 14[64:0

]
j
Reserved 12[64:0]
]
]
]

Reserved 15[64:0

Fig. 8

LCRC[15:0]

US 9,325,449 B2

Sheet 8 of 31

Apr. 26,2016

U.S. Patent

q96 ‘51
[0:1 Joomo7 | lo: 1 110101 [0 Heou0 [0:L L1g0H0T
[ovoly L N4 [o:volSt Hid
[ovglel w4 [0:v9let i
[o:v9lol w4 [0:%9]11 g
{09l 1 [0:v9le i
{099 w4 [0:%9]2 M4
[o:voly w4 [o:p0ls nid
[0:v9lz 4 forpole w4
{090 - [ovoll w4
411 uonosia@ paouryug
G ‘31
[0:G1oH0T
[0'voly1 Hid [o'polgt 1id
[ovolel id [0:v9let i
[ovglol w4 0791t M4
[0:pol8 i [0:v9l6 M
[0:p9lo i [0:v9ls w4
{09l w4 [o:p0ls nid
[0:p9le 14 [o:p0le nid
[o:volo w4 forvall w4

dl1 uonosieq piepuels

US 9,325,449 B2

Sheet 9 of 31

Apr. 26,2016

U.S. Patent

yiedeieqg xy

"1 U4
8lAg g

0 Ui
8lAg g8

g0

01 "31

[0:1]0 | [o:e1]oH0T |

[0:v9ly) 14 [opolst id

[0:v9lz) Hid [o:v9let uid

[o:v9olot 14 [0:volt L uid

[0:¥9]8 1id [0:9le Hid

[0:v9l9 14 [0:%9]2 14

[o:v9ly Hid [0:9lg 14

[o:v9le 14 [0:¥9]e nid

[0:v9l0 ¥4 [o:v9l) Hid
¢ aueT ¢ ouen 1 Hi4
Z aueT 2 aue e1hg g

a0

| aue’ | aueT 0 4
0 sueT 0 eueT alAg 8

yiedeleq xy

US 9,325,449 B2

Sheet 10 of 31

Apr. 26,2016

U.S. Patent

yiedeieq xg

IT 31
oo (lo:e1]oouD | o: 1110 lo:e1]hodoT |
Ho.%_wm 14 [0:79]62 Yid [0:99]2€ B4 [0:79]8€ NI
[0:%9]p2 Hi4 [0:79]52 Hid [0:79]92 M4 [0:99]22 N4
[0:+9]02 14 [0:79]12 M4 [0:¥9]ze U4 [0: v@_mm i
[0:%9]91 Hid [0:79]2 1 M4 [0:79]81 14 [0:p9l61} Hid
[0:v9lg) 1 2 ARUE [0:99]p1 U4 [0:79]G) N4
[0:¥9]8 14 [0:+9]6 114 [0:%9]01 Ui [0:99]1 1 M4
[0:¥9]y 1 [0:$9lG 1 [0:49]9 14 [0:99]2 W4
[0:+9]0 14 [0:%9]1 Ui [0:¥9]2 14 [0:p9le M4
8c '€ U4 L duEn L duEn 8£"'C i
eig g g aueT g aue o1Ag 8
L€72 Wi S eueT g sue /€72 Wi
oikg 8 p oue v oue slig 8
g0] |T===== =T e e e a0
621 Hid € oueT € sue 62} Hid
eifg g 2 aue Z auen sifd 8
820 Hi4 | eueT L sueT 8270 i
o1Ag 8 0 eue 0 aue sifg 8

yiedeie xg

US 9,325,449 B2

Sheet 11 of 31

Apr. 26,2016

U.S. Patent

ZI 81

r4F4]
d17 din 7
A A
N N\
90T 80T
I . i
xS E— , seue] X
I B P)
Hwisues | aAl80aY
05T m (dAL) 0021 05T
I i
saue X4 J AU ﬂ SauUBT XL
I — - j
dl d11
anvoay e " Hwisuel |
N N
HOd Hur HOd Yur
q weuodwon e v usuodwon
012}

U.S. Patent

Apr. 26,2016

Sheet 12 of 31

j{vLo Head Fiit (Length=4);

CVL0%4 1402 (TYP) VLO starts

VL0 Body' Flit” /

VL1 Head th (Length 4)

RVLIS VL1 interleaves VLO. Push VLO.

ﬁVLZ\: VL2 interleaves VL1. Push VL1.

VL2 finishes interleaving. Pop VL1.

VL1
VL7 VL7 interleaves VL1. Push VL1
VL7 finishes interleaving. Pop VLO.
S<VL1 VL1 finishes interleaving. Pop VLO.
LD
?‘?\(’ng jgﬂ gm-g i VLO finishes Flg. 14
/ Active VL Reg.
1500
1400 /
'vgo Head th (Le;ngm z_;) FVLOA_1372 (TYP) VLO starts
ZVLO Body Flit77r
VL1 Head Flit (Length 4) ”)SVU”<f VL1 interleaves VLO. Push VLO.
":,,)- EEE T gx R
%VL2\: VL2 interleaves VL1. Push VL1.
2N .~ 1502
VL Marker = VLO § VL Marker indicates a switch back to VLO. Push VL2, Pull VLO.
S e e e v g g e
(7 NLO Body Flitgerers sVLOY

\VL2 Tasl th

\\ . ",*ﬁ;)

VLO finishes. Pop VL2.
VL2 finishes. Pop VL1.

VL7 interleaves VL1. Push VL1
VL Marker indicates a switch back to VL1. Push VL7. Pull VL1,
Vi 5 VL1 finishes interleaving. Pop VL7.

) VLO finishes

Fig. 15

Active VL Reg.

US 9,325,449 B2

US 9,325,449 B2

Sheet 13 of 31

Apr. 26,2016

U.S. Patent

SiSYded Jojsued | Ul DZDOmPDOI..IV
| — w
lg I
| 9191
(2 ooed AQy:
Wﬁwaem,&bm S1id »
,,”...” i ,
Z 19voeg Aqg peidwesig m
L ~ TR i - t —
N e Qim.w |
Y L] ../w.,,..ai.x ,/ -
. W s AM# sieyng
S @ N Sk :
ook 0414 s | 8181 Hwsuel |
(UBIH) €A {dH) € za 191 jolesed
N 12 BUIALLY
A s1ex0Rd
ouge
N T sm
P09t A v 014 2 _m,,, g7 >
. WP} Z7IA otet |
91 31 kA L
ST o T
ONISSIOOHd=> | (01) 171 \\\Aﬁm_ﬂe@_w oy 7
PIELI LTS SIS L)

US 9,325,449 B2

Sheet 14 of 31

Apr. 26,2016

U.S. Patent

ANLL

SISO JBISUBL | HUIT] e (IN(TOGLNO=P>

£

[4

My,

51

80L1

RN
°L

=

Sid »

0L} M
bananer v 2 190eg Aq poaeajelu] U m
~ - : : j -
) / H 'R , ,N ! N
AN w BN | siegng
AN 90917 YO M Hwsues |

LI 81

.

| (UBIH) €17

o NS

Hdr) € Mo i

¥ »\vvs/w»X/

9021

~ £
N1 1e Buiny

N Y0917y

[ejjered

sjeNoed
olBlol:

20917
~=ONISSIO0Hd P

~ O4i4 [T c ‘_m&mn_ >
// 00L1L —..w.
" ol 1eung 18 Buny ™ % AN
4 selqang Ay
O4did AL mnw. vn_.. A A S S
U0 MO {ABoug MO OB |
(mo) 1A ’ 31 ...‘m\ \M_ v «M\..W\.»,.W\% .Mv\ w w\w.n\,.,m L .

US 9,325,449 B2

Sheet 15 of 31

Apr. 26,2016

M /018! g7 .M.w g
i
08 2 [arpu{—[v | [2 |y aranfeos8t
[¢¥]
O N <
mel, 07590 {—— 05060 | 882 [m— dlXL|
4O X L .|A_o:x @m@wwmm gLz pzapcgzeeix I d— fogo x| —perginofen]
A | FTOoH0 “|_pmuomo — 962 . 0 aue v081
woig | MG e 2 seicez o [T 4| oo |y
101U0D 1| ZTOHD (), ZOOHD — 952 | U jonuog AT
WU XY | - S S iebendeisiiebeiisksinla N S — MU X4
- .|A_,@mm.h,&..E.»&,N.Emwmmmm@ww@mmﬂm Hlape __ | 4

=

 {[eTom | TO0H0 952 2 sue
S xA_mtx L L LXGLYX 6 LIX SZIX 22X g ilgapx (B A|. ¥08T ._
0081T WoOd nwsueij >m_OO

.*Ivom,mu ..w.m peteInoeO | || Wk , soyng feidey
SN T e - . ST —
.. i LA 7 ﬁ,@m-n/mowp
{05085 | cumow) [T Bouiasa]] SIS
I G 7 ik B B lol ozl s _ 1081
A_. Yoot g gy Tl P
Pob by ey IR
Pl e ey
I bbb bl g g
polimidiaiig sl e ey
«[wo8] Yol by by i NS
I A_ /Y5 Eb by TR0 4
S bos SIS pial Pl bl e b
[prligd g gy
T aENsI angeg v 8oBIoI JLGE

U.S. Patent

US 9,325,449 B2

Sheet 16 of 31

Apr. 26,2016

U.S. Patent

7

dLIXHIXN

Received

(——| 250U Tmmﬁ

071040

q81 31

=
T

dL PN 808}
IS JIIXL|

404D X1 - —epconxotpcv g Lycezipcozipd rexl Ll || f— fogo X1 [—pateinoeo]
~| [77ou0 (—— eoom0 -esey 0 sue yosi
xo@m v, lmm;%x,ﬁmwﬁmm ExnmEthﬁxﬁmﬁ.wﬂiNi._.m.__ 44— og b
{04uoQ| | ZT080 {— 05090 Tmmﬁ } auen |OAUOY) o
MU XH | e e S ——— i MU X :
S Ao aax X X oz yeux g eex 11 9
J A S i T T | N
- ETOHD (—, TO0H0 92 2 aue’ Ts
4 i ..l.ﬂl.hl...l..‘(vl.“.l.,l...ﬂ..l. s v a1 s .0. .Wuoww. .JI.
450 — e e e X e eeix flowx [Tl 4 T e
Hod PAioaY [B5S LT Xl ¢ | / €8UET | GORT HOd MWSUBIY A
Ho X siBnoe i Jayng Aejday |
. 24O Xy poleno| %mﬂ_ I ‘, ~ Shanusy
Hileer 8zy ﬂ _F_ m R T &m T e
“ (09080 | [[ar1 ks] (cpues . T o
- [958 955 o o : T 1g(]
T o iy
RELN sl bl 2 V) ¢
‘915 802 Pl g gy 1e LM
E T 3 3 3 4 3 3 4 4 =
| 25080
3 G 2 g 2 Qb o 2bos bl gl DANERE
¥08 ¥08 Lk b a b il b e NN RARN e
£ 5595 ! ! i ! ‘ ! ! ! NN NG
W Bos diriet L — - N
4 i 3 i 3 3 4 $ 908}

& a0B[aju] ouqgeg

V @088l ouge4

US 9,325,449 B2

Sheet 17 of 31

Apr. 26,2016

- /018! 9 3L
L TR v e [¥ J——) dLapnfe08t
Q
& [oromi— [=S]
JOHD X1 —+ OHO X1 [Tpelenoen]
7583 f—— w\of
¥oolg —L o015 NN
jouoD | | e U 104u0D
U XY MU X4 L
* : BN
ET0H0 fd ¥ 7
% * % = S a - T
. Sassassd
vod eneoey | "B JITXE{—) ¢ | LOd HWSUB | A
. E loyng Aejdey |
RN ez > 82p sigl RETEINTEN
(05080 | [T aL1 hukneg || (pues™) sfl]
958 9gg azzgL ezzgl S/ 1 aoa
(7508 | e’y [T midiapanon] [T Siwdiamanog] | -
mw.m mON _) = —— — - m [7&.~'.l_h§wxz
25900 12
08 {p08] -1
L] £50H0 FREER O
[15 bes dLFhvi8) e - N
g ooeliaiu] olgeS V/ @0BLISIU| OB 908t

U.S. Patent

U.S. Patent

Apr. 26,2016

Sheet 18 of 31 US 9,325,449 B2

LTP[1055:0]

CRC[15:0]

{flit15,flit14 flit13 flit1 2 flit1 1, fit10,flit9 fit8, Flit7 flit6, flit 5, flitd flit3 flit2 flitl flitQ}

{xfr32,xfr31,xfr30,xfr29, xfr28,xfr27,xfr26,xfr25,xfr24,xfr23,xfr22,xfr21,xfr20,xfr19,xfr18,xfri7 xfri6,
xfri5,xfr14,xfri3,xfri2,xfri1,xfri0,xfro,xfr8,xfr7, xfro, xfrs,xfrd, xfr3,xfr2,xfrl,xfro}

Fig. 19

(H1e e State_|

Fig. 20

Lane3{31:0] | Lane2[31:0] | Lanel[31:0] | Lane0[31:0]}
xfr3 xfr2 xfri xfrQ
xfr7 xfré xfrS xfrd
xfrii xfrig xfre xfr8

xfri5 xfri4 xfri3 xfr12
xfri9 xfri8 xfri7 xfri6
xfr23 xfr22 xfr21 xfr20
xfr27 xfr26 xfr25 xfr24
xfr31 xfr30 xfr29 xfr28
xfr2 xfri xfro xfr32
xfr6 xfr5 xfra xfr3
xfr10 xfrg9 xfr8 xfr7
xfri4 xfri3 xfri2 xfril
xfri8 xfri7 xfri6 xfri5
xfr22 xfr21 xfr20 xfri9
xfr26 xfr25 xfr24 xfr23
xfr30 xfr29 xfr28 xfr27
xfri xFr0 xfr32 xfr31
xfr5 xfr4 xfr3 xfr2
xfr9 xfr8 xfr7 xfré
xfri3 xfri2 xfril xfri0
xfri7 xfri6 xfri5 xfri4
xfr21 xfr20 xfri9 xfri8
xfr25 xfr24 xfr23 xfr22
xfr29 xfr28 xfr27 xfr26
xfro xfr32 xfr31 xfr30
xfrd xfr3 xfr2 xfri
xfr8 xfr7 xfré xfr5
xfriz xfrii xfrig xfr9
xfri6 xfri5 xfri4 xfri3
xfr20 xfri9 xfri8 xfri7
xfr24 xfr23 xfr22 xfr21
xfr28 xfr27 xfr26 xfr25
xfr32 xfr31 xfr30 xfr29

39LTP State |

4" LTP State

US 9,325,449 B2

Sheet 19 of 31

Apr. 26, 2016

U.S. Patent

BEUX

BHX

IR s Q%M_

£

S

SEE

P E I
RS ‘
S

B

IR

& .u,w\\ o _\..H&H,mw@
s il
o’ \\M S

e b Wz

LGdX

S0

TEETETE T 77 %t.\m
A AR
R \M S
A i

s \kﬂﬁm@ﬂaﬁ& i

Rty
84X

‘.%,.“-\.,, \\\ PR
o . Rl N d
9 A

L Nmﬁ.ﬁ,@#&a -

U.S. Patent Apr. 26, 2016 Sheet 20 of 31 US 9,325,449 B2

2200a

v

Receive LTP Mode = Normal
5
(2204 2902

A 4

For each lane, calculate CRC based on
data received on that lane for the LTP
Sequence and write to register/buffer,

overwriting per-lane CRC for previcius LTP

¢
v 2206

Calculate CRC of received LTP data and
NEXT LTP compare to CRC in transmitted LTP
hY

(2208

CRC
atch?

2210
YES

v
LTP is good:
perform normal processing of LTP data

NO

v

| LTPisbad

(2214

(2212

A4
Store per-lane CRC values for
bad LTP on a per-lane or

XFR-group basis

(221 6

22b

Fig. 22a

U.S. Patent Apr. 26,2016 Sheet 21 of 31 US 9,325,449 B2

2200b
Fig. 22b
(: Retrain Link :)
> @ LTP is bad 3
(2232
2214
Reset Link Sequential
Error Timer Return Refransmission

r Lo
¢ Request (RetryReq) identifying
2231 l Bad LTP (NXtRxLTP)

Internally Mark (221 8
RetrainReq by this Rx
(2230 set LTP Rx mode to tossing;
discard LTP
b
Send RetrainReq LTP(s) (000
{, 4
2228 ReceveLTP |
(2222
YES Y

For each lane, calculate CRC based on
data received on that lane for the LTP
Sequence and write to register/buffer,

overwriting per-lane CRC for previczus LTP

. Co206

Calculate CRC of received LTP data and
compare to CRC in transmitted LTP
A

(2208

Discard LTP

| |Increment total LTP CRC
error count

b}
(o005

U.S. Patent Apr. 26,2016 Sheet 22 of 31 US 9,325,449 B2

2200c 2

D
Receive Retransmission Request
(RetryReq) identifying Bad LTP
(NxtRxLTP) 5 .
T Tooas Flg. 220
Send Retry Marker LTP Pair to Rx
v (2240
Begin retransmission (replay) from Replay
Buffer, beginning with Bad LTP
(2242
Reach end
of Replay LTPs without NO
YES RoundtripMkr?
l 2244
Reset Nulicount n=k . Ressat Nulicountn=m . |
(2245a (2245b
Transmit Null LTP to Rx; Continue Replay; |
nt+ ’—’ fn--
b >
r ‘22462 ‘20460

Buffer
returned to start or
n=07

Receive
oundtripMkr?

2248
2249

YES

YES

Y
Return to Normal Transfer mode;
Transmit n Null LTPs for each
cycle through ReplayBuffer

v (2250
22a

U.S. Patent Apr. 26, 2016 Sheet 23 of 31

Process Retry Marker; Rx counts down fo
prepare for receipt of replayed Bad LTP \

US 9,325,449 B2

2200d
o

v {oogo

Return RoundtripMkr Pair to Transmitter;
Return Receive state to normal D

&

2254

Receive Replayed Bad LTP

Il (o055

For each lane, calculate CRC based on
data received on that lane for the LTP
Sequence and write to register/buffer,

overwriting per-lane CRC for previou§ LTP

! (2006

Calculate CRC of received LTP data and
compare to CRC in transmitted LTP

(2208

NO LTPisbad

‘2210
YES

\ 4

Compare per-lane CRC with stored per-
{ane CRC on per-lane or XFR-group basis
A

v (2058

Determine bad lane based on mismatched
perfane/per XFR-group CRCs

22612
Y

increment Bad Lane Count

NO

<226O

Coming
out of Refrain init.

A4

LTP is good: Process LTP
A

(2264
oo NG

YES
h 4

Increment Sequential Bad
Lane Count

Fig. 22d

(2214

A 4

22b

2270

- yES -y Reinttialize Link wsth)

Bad Lane Removed

U.S. Patent Apr. 26,2016 Sheet 24 of 31 US 9,325,449 B2

2200&/_\‘ @

> (Re)start Timer

NO (op72

Y

@
2274

YES
v

Decrement Sequential Error
Bad Lane Count for each Lane

(2276

Fig. 22¢

US 9,325,449 B2

Sheet 25 of 31

Apr. 26,2016

U.S. Patent

red SINGIIPUY pues

A
LdLaunAney 1o
od L18unNAneY

o18idwod st uled}al

sy Jaye by es Jied BAHARSY

aouanbag uieney

A

lied bagureney puag

A
sdipeg
jeniuanbag A0Y

poco
Sdl1
peq/POoCY

‘]

L/OBINATSY Aoy

e

0 = I8 MU 188

qeT 31

THALTXHIXN © 0 = JLTIXHIXN
—\— Jied DOQAITSY puss dLTNNPOOD | 4 xewd | 4eod == JLIXHIXN

b

d.11peg AdY

L —» Buissoxy'v.i1
A

A

dlsiqelieypooy

[EULIOU 8AO o SURL] jul

L TMIXN == d 11X 1IXN

ae|dwion
sd17 Aeiday

Sd17 Aeidey puag
Hed DHNARY pues

BagAREgAY 1

aledwod St uiesIal By} Jsye
BEHAISY 104 Hem
aouanbag uieay

A
BEHUENSHAY

h

SUAITEHAOY

DET "3

d17 MaN puss

A

BagAIEHAOY;

JELLIOU DAROYIO SURI YU

Y 4/ 00€2

U.S. Patent Apr. 26, 2016 Sheet 26 of 31 US 9,325,449 B2

Lane3[31:0] | Lane2[31:0] | Lane1[31:0]| Lane0[31:0]
T xfr3T; VXfrZ) xfri
Halhal el ' MO fn 288--| CRC-GO
| xfr7 1 xfré |} xfr5 xfra
. ') i H
[xfrit! TXfri0 | xfro ¢ e T
[Xfri5 P xfrig) xfri3 xfri2 /L
: { 1 | st
'xfr19 | U xfri8 | xfri7 xfri6 1% LTP State]
T g T ;""‘""""""""""""",
[Xfr23y §Xfr225 xfrali L gxf20f) 256 i CRGC-G2 |
| Xfr27 1 1 XFr26 1 xfr25 xfr24 N
I_Xﬁ‘31 ;L>_<\f!‘_3:0__: ESEYS S R B ET T 256’ CRC‘GS |
:")“(Frvzwi xfri xfrQ xfr32
i : ¥
08 Kfrs o PR LT 288 CRC-GO
' xfri0: xfro xfr8 xfr7 |
— | NI D2 Lo1s R
| xfrid xfri3 xfri2 y xfriil i CRC-G1
T I L .]
' xfri8 s xfri7 xfri6 I xfris : /_ nd
| xfr22 ! xfr21 xfr20 Ixfrio | 27 LTP State
T 1 [
(xfr26, L a5t] Mr2dd X23) 2561 CRC-G2 |
| xfr30 3 xfr29 xfr28 § xfr271 TS
xfrl xfr0 xfr32 pxfr3g b 2561 CRGC-G3
T wfr TR T
xfr5 xfra | LIS TTR T TN 288--| CRC-GO
xfra xfr8 ; xfr7 i P xfré |
i3 x| ot EI o5g ... CRC-G1
xfri7 xfri6 ixfri5 ’ Ixfrid ! 3 LTPS
xfr21 xfr20 fxfri9 i IXIris | tate
T . - T] Iiattsiuteiutsininteintaintatet
xfr25 xfr24 ’xf|23; zxfrzzi ______________ 256'“5 CRC-G2 E
xfr29 xfr28 [xfr27 1 I Xfr26 | MRRIORRRARA
X0 xfr32 Ixfran T FRT AR R 256 “1 CRC-G3 |
i T
xfra 3 X2l I ST o83 | CRC-GO
Xfr8 P xfr7 | P xfr6 xfr5
xfri2 ;xfrll ' Exfr10 | -3 R 256 CRC-G1
xfris | Xfri5 - ixfri4 | xfr1izi A, T
| : ' th
xfr20 IXfrig | ixfri8 | xfri7 4°L TPStatej
1 . 1 H T
xfra4 ;Xfr23 ! 3Xfr22 e xRyl b 256 - CRC-G2 ;
xfr28 xfr27 | ixfr26 xfr25 LTt
“fr32 L)(fl’31_! ixfr30§ Xfl’29 256 ‘ CRC—G3 l

U.S. Patent Apr. 26,2016 Sheet 27 of 31 US 9,325,449 B2

CRC xfr Group CRC-GO CRC-G1 CRC-G2 CRC-G3
Bad LTP CRCs 428 556 208 804

Lane3{31:0] | Lane2{31:0] | Lane1[31:0] | Lane0{31:0]

:‘ 'x7r'3-i E—iﬁ“z‘ _i xfri x| b
| xfr7 | xfr6 i xfr5 . .
| xfril ! E xfri0 E xfro
i xfris : E xfri4 i xfri3
: xfri9 E xfri8 E xfri7
i xfr23 l E xfr22 |
| Xfr27 | D xfr26 |
a1 : '?_55[3_9_5

xfr2 xfri

xfré

xfr10

xfrid

xfrig i

— 2 LTP State_|

xfr26

xfr30

xfrg
xfr4 xfr3
xfr8 xfr7
xfri2 xfriti
xfri6 xfris h
xfr20 xfrig 47 LTP State
xfr24 xfr23
xfr28 xfr27
xfr32 xfr31

U.S. Patent Apr. 26, 2016 Sheet 28 of 31 US 9,325,449 B2

Lane2[31:0] Lanel[31:0] Lane0[31:0]
t xfr2 ! P xfrl | xfrQ
| Xfr5 | xfrd | xfr3
' xfr8 | xfr7 xfré
XFril i | Xfr10] xfr9
ixfrig i xfri3: xfri2
i xfri7 | Xfr16| xfr15
:xfrZO : xfr19 xfri8
Xfr23 | | xfr22 xfr21
(Xfr26 ! i Xfr25: xfr24
1 xfr29 ! | xfr28! xfr27
|xfr32 | Xfr31 xfr30
352 352 352
| CRC-G2 i i CRC-G11 CRC-GO

US 9,325,449 B2

..............

U.S. Patent Apr. 26,2016 Sheet 29 of 31
Lanel[31:0] Lane0[31:0]
 xfrl! | Xfr0 |
| XFr3 C xfr2 ¢
P XFrs | xfrd |
| Xfr7 | ' Xfr6 ¢
| xfr9 | xfr8 !
inrl 1 : ;XfrlO; 544
:xfr13; ;xfr12!
ixfrlSI ‘xfr14-
,xfr17' ,xfr16.
sxfr19 xxfr18x
:xfr21 . gxfrZOj
xfr23i iXfr22:
,XfrZSI :Xfr24; 512
xfr27. i xfr26;
xfr29, xfr28!
IXfr31; Ixfr301
L xfro | IXfr32;
| Xfr2 | xfrl’
¢ xfra . Xfr3
| Xfr6 | t Xfr5 i
| xfr8 | | xfr7
:xfrl 0 E ’Xfrg IESTISRIEIITTES RRTRI 544
xfri2| Xfrid,
ixfrig: 1 Xfr13;
Xfri6| ixfr15i
ixfri18: 'xfr17!
§xfr20§ :xfr19:
xfr22| ixfr21;
;Xfr24i ler23’ 512
Xfr26. | Xfr25!
xfr28! 'xfr27!
.xfr30, ;xfr29§
Xfr32) (xfr31;

Fig. 27

U.S. Patent

Apr. 26,2016

Lane0[31:0]

xfrO

xfri

xfr2

xfr3

xfr4

xfr5

Xfré

xfr7

xfr8

xfr9

xfriQ

xfriil

xfri2

xfri3

xfri4

xfris

xfri6

xfri7

xfri8

xfri9

xfr20

xfr21

xfr22

xfr23

xfr24

xfr25

xfr26

xfr27

xfr28

xfr29

xfr30

xfr31

xfr32

Sheet 30 of 31

Fig. 28

US 9,325,449 B2

US 9,325,449 B2

Sheet 31 of 31

Apr. 26,2016

U.S. Patent

—
AHd X4 [jseheT-angjiiehet-gng
(dAL) p26e || 194SUBIL || ouged
oMU xy | our xy

%L

0 eue

e

FOUET ¢ jonuon

vvv_ Uy Xy

Z oue "
Er= ol
gouey || 0262 162

zz6e - 10d 8Aleosy 2081

oMU x| ojun Xy
i n

goeue] <l 0"IA T!
-

% ,%N%o @ IA

Prg™ Rk &%é

Z aue]

geuey i 2i6e 016e

¥162 - L0d JwWSuel] 008

YE62
P
¢ \mmmm
A sioyng
y angoaY
0e6e
),
<
A
aubu3g yNg)
mmwNJ
subug sn@0sY
A4
2|0d
2e6e
P,
<
sieyng 1
Hwsuel§ e
9262
s
suibug nwsuel
iUz L 067

F06e MHOd duqe

20RO SLGE ISOH

50062 6¢ 3 L% |
“ 6
0962y 8104 | 2785
C (dAL
2562 i Tl
2962 mmmmovmm
% \ D \
</
N AN
i a 1
_w 8|0d | | ®10d e
Z1/H]
ommm/ 9v6e ~\Oll [o100
0gez, ¥ Ndo
; 2L
1] sa00
“HMH 4 1| o" (|
3i10d 910d
mvmmwl Al
1] ss00
6z
296¢ | ¢
7 3062
505 YS6C Y 441 910d Aowspy | DoS
DINA-Qed
uoyeoyddy
2IBMI0S

US 9,325,449 B2

1

LANE ERROR DETECTION AND LANE
REMOVAL MECHANISM TO REDUCE THE
PROBABILITY OF DATA CORRUPTION

BACKGROUND INFORMATION

High-performance computing (HPC) has seen a substantial
increase in usage and interests in recent years. Historically,
HPC was generally associated with so-called “Super comput-
ers”” Supercomputers were introduced in the 1960s, made
initially and, for decades, primarily by Seymour Cray at Con-
trol Data Corporation (CDC), Cray Research and subsequent
companies bearing Cray’s name or monogram. While the
supercomputers of the 1970s used only a few processors, in
the 1990s machines with thousands of processors began to
appear, and more recently massively parallel supercomputers
with hundreds of thousands of “off-the-shelf” processors
have been implemented.

There are many types of HPC architectures, both imple-
mented and research-oriented, along with various levels of
scale and performance. However, a common thread is the
interconnection of a large number of compute units, such as
processors and/or processor cores, to cooperatively perform
tasks in a parallel manner. Under recent System on a Chip
(SoC) designs and proposals, dozens of processor cores or the
like are implemented on a single SoC, using a 2-dimensional
(2D) array, torus, ring, or other configuration. Additionally,
researchers have proposed 3D SoCs under which 100’s or
even 1000’s of processor cores are interconnected in a 3D
array. Separate multicore processors and SoCs may also be
closely-spaced on server boards, which, in turn, are intercon-
nected in communication via a backplane or the like. Another
common approach is to interconnect compute units in racks
of'servers (e.g., blade servers and modules) that are typically
configured in a 2D array. IBM’s Sequoia, alleged to be the
world’s fastest supercomputer, comprises a 2D array of 96
racks of server blades/modules totaling 1,572,864 cores, and
consumes a whopping 7.9 Megawatts when operating under
peak performance.

One of the performance bottlenecks for HPCs is the laten-
cies resulting from transferring data over the interconnects
between compute nodes. Typically, the interconnects are
structured in an interconnect hierarchy, with the highest speed
and shortest interconnects within the processors/SoCs at the
top of the hierarchy, while the latencies increase as you
progress down the hierarchy levels. For example, after the
processor/SoC level, the interconnect hierarchy may include
an inter-processor interconnect level, an inter-board intercon-
nect level, and one or more additional levels connecting indi-
vidual servers or aggregations of individual servers with serv-
ers/aggregations in other racks.

It is common for one or more levels of the interconnect
hierarchy to employ different protocols. For example, the
interconnects within an SoC are typically proprietary, while
lower levels in the hierarchy may employ proprietary or stan-
dardized interconnects. The different interconnect levels also
will typically implement different Physical (PHY) layers. As
a result, it is necessary to employ some type of interconnect
bridging between interconnect levels. In addition, bridging
may be necessary within a given interconnect level when
heterogeneous compute environments are implemented.

At lower levels of the interconnect hierarchy, standardized
interconnects such as Ethernet (defined in various IEEE 802.3
standards), and InfiniBand are used. At the PHY layer, each of
these standards support wired connections, such as wire
cables and over backplanes, as well as optical links. Ethernet
is implemented at the Link Layer (Layer 2) in the OSI 7-layer

25

30

40

45

50

55

2

model, and is fundamentally considered a link layer protocol.
The InfiniBand standards define various OSI layer aspects for
InfiniBand covering OSI layers 1-4.

Current Ethernet protocols do not have any inherent facili-
ties to support reliable transmission of data over an Ethernet
link. This is similar for the link-layer implementation of
InfiniBand. Each address reliable transmission at a higher
layer, such as TCP/IP. Under TCP, reliable delivery of data is
implemented via explicit ACKnowledgements (ACKs) that
are returned from a receiver (at an IP destination address) to a
sender (at an IP source address) in response to receiving 1P
packets from the sender. Since packets may be dropped at one
of'the nodes along a route between a sender and receiver (or
even at areceiver if the receiver has inadequate buffer space),
the explicit ACKs are used to confirm successful delivery for
each packet (noting that a single ACK response may confirm
delivery of multiple IP packets). The transmit-ACK scheme
requires significant buffer space to be maintained at each of
the source and destination devices (in case a dropped packet
or packets needs to be retransmitted), and also adds additional
processing and complexity to the network stack. For example,
as it is possible for an ACK to be dropped, the sender also
employs a timer that is used to trigger a retransmission of a
packet for which an ACK has not been received within the
timer’s timeout period. Each ACK consumes precious link
bandwidth and creates additional processing overhead. In
addition, the use of timers sets an upper limit on link round
trip delay.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing aspects and many of the attendant advan-
tages of this invention will become more readily appreciated
as the same becomes better understood by reference to the
following detailed description, when taken in conjunction
with the accompanying drawings, wherein like reference
numerals refer to like parts throughout the various views
unless otherwise specified:

FIG.1 is a schematic diagram illustrating a high-level view
of a system comprising various components and intercon-
nects of the fabric architecture, according to one embodi-
ment;

FIG. 2 is a schematic diagram depicting the architecture’s
layers for transterring data over the fabric links, according to
one embodiment;

FIG. 3 is a schematic diagram illustrating a plurality of flits
grouped in a bundle;

FIG. 4 is a schematic diagram illustrating the structure of a
Fabric Packet, according to one embodiment;

FIG. 5 is a diagram illustrating the data structure of a
standard detection LTP, according to one embodiment;

FIG. 6 is a diagram illustrating the data structure of a 14-bit
CRC LTP, according to one embodiment;

FIG. 7 is a diagram illustrating the data structure of an
enhanced detection LTP, according to one embodiment;

FIG. 8 is a diagram illustrating the data structure of a
standard detection Null LTP, according to one embodiment;

FIG. 9a is a diagram illustrating an embodiment of a trans-
mission scheme for a 4-lane link under which flits for a
standard detection LTP are processed two at a time in parallel
at an interface between the Link Fabric and Link Transfer
sub-layers, according to one embodiment;

FIG. 954 is a diagram illustrating an embodiment of a trans-
mission scheme for a 4-lane link under which flits for an
enhanced detection LTP are processed two at a time in parallel
at the interface between the Link Fabric and Link Transfer
sub-layers, according to one embodiment;

US 9,325,449 B2

3

FIG. 10 is a schematic diagram illustrating transmission of
a 14-bit CRC LTP with two control bits over a 4-lane link
under which two flits are processed two at a time in parallel at
the interface between the Link Fabric and Link Transfer sub-
layers according to one embodiment;

FIG. 11 is a schematic diagram illustrating transmission of
two 14-bit CRC LTPs with two control bits in parallel over an
8 lane data path comprising two 4-lane links ganged together,
according to one embodiment;

FIG. 12 a schematic diagram illustrating an example of
bidirectional data transmission between two link ports
employing 4 lanes, according to one embodiment;

FIG. 13 is a diagram illustrating an example of an embodi-
ment of interleaving Fabric Packet flits from two FPs sent
over separate virtual lanes;

FIG. 14 is a diagram illustrating use of Push and Pop
interleaving, according to one embodiment;

FIG. 15 is a diagram illustrating use of a combination of
Push and Pop interleaving and use VL. marker interleaving,
according to one embodiment;

FIG. 16 is a combination schematic and timeflow diagram
illustrating an example of preemptive interleaving of flits
from three Fabric Packets buffered in three separate VL
FIFOs corresponding to VLs having separate priority levels,
according to one embodiment;

FIG. 17 is a combination schematic and timeflow diagram
illustrating an example of bubble interleaving and preemptive
interleaving of flits from three Fabric Packets buffered in
three separate VL FIFOs under which two VLs share a prior-
ity level and the other VL having a higher priority level,
according to one embodiment;

FIGS. 18a and 186 are schematic diagram illustrating
transmission of an LTP transmit scheme and use of per-lane
CRCs and LTP CRCs to detect LTP lanes and errant lanes,
wherein FIG. 18a depicts an original transmission of LTPs in
the LTP transmit scheme and FIG. 185 depicts retransmission
of LTPs in the LTP transmit stream using a replay buffer,
according to one embodiment;

FIG. 18c¢ is a schematic diagram illustrating use of retry
markers and roundtrip markers to prevent replay buffer LTPs
from being overwritten, according to one embodiment;

FIG. 19 is a diagram illustrating transmission of a standard
detection LTP using 33 transfer groups (XFRs), according to
one embodiment;

FIG. 20 is a diagram illustrating transmission of L'TPs
across a 4-lane link using 33 32-bit XFRs and four LTP
sequence states, according to one embodiment;

FIG. 21 is a diagram illustrating how flit data comprising 8
bytes of data plus a 657 bit is transferred over a 4-lane link
using 33 32-bit XFRs, according to one embodiment;

FIGS. 22a-22e collectively comprise is a multipage flow-
chart illustrating operations and logic for facilitating reliable
LTP transmission at the link-level using implicit ACKs with a
replay buffer, and also illustrating operation and logic for
detecting errant lanes, according to one embodiment;

FIG. 23a is a state diagram for a transmitter, according to
one embodiment;

FIG. 235 is a state diagram for a receiver, according to one
embodiment;

FIG. 24 is a diagram per-lane CRCs that are calculated and
stored on a XFR-group basis, according to one embodiment;

FIG. 25 is a diagram showing exemplary per-lane CRC
calculations stored on a per XFR-group basis for the example
of FIGS. 184 and 185 under which per-lane CRCs calculated
during an original transmission of a bad LTP under a first L'TP
sequence state and retransmission of the bad LTP from the
replay buffer under a third LTP sequence state;

15

20

25

30

40

45

50

55

4

FIG. 26 is a diagram illustrating transfer of a standard
detection LTP over three lanes under which 11 XFRs are
transferred per lane in parallel, according to one embodiment;

FIG. 27 is a diagram illustrating transfer of a standard
detection LTP over two lanes under which 17 XFRs are trans-
ferred one of the lanes and 16 XFRs are transmitted over the
other lane, and employing two LTP sequence states, accord-
ing to one embodiment;

FIG. 28 is a diagram illustrating transmission of a standard
detection L'TP over a single lane using 33 32-bit XFRs,
according to one embodiment; and

FIG. 29 is a schematic diagram of a system including an
HFI, according to one embodiment.

DETAILED DESCRIPTION

Embodiments of methods and apparatus for implementing
a lane error detection and lane removal mechanism to reduce
the probability of data corruption in multi-lane links are
described herein. In the following description, numerous spe-
cific details are set forth to provide a thorough understanding
of embodiments of the invention. One skilled in the relevant
art will recognize, however, that the invention can be prac-
ticed without one or more of the specific details, or with other
methods, components, materials, etc. In other instances, well-
known structures, materials, or operations are not shown or
described in detail to avoid obscuring aspects of the invention.

Reference throughout this specification to “one embodi-
ment” or “an embodiment” means that a particular feature,
structure, or characteristic described in connection with the
embodiment is included in at least one embodiment of the
present invention. Thus, the appearances of the phrases “in
one embodiment” or “in an embodiment” in various places
throughout this specification are not necessarily all referring
to the same embodiment. Furthermore, the particular fea-
tures, structures, or characteristics may be combined in any
suitable manner in one or more embodiments.

For clarity, individual components in the Figures herein
may also be referred to by their labels in the Figures, rather
than by a particular reference number. Additionally, reference
numbers referring to a particular type of component (as
opposed to a particular component) may be shown with a
reference number followed by “(typ)” meaning “typical.” It
will be understood that the configuration of these components
will be typical of similar components that may exist but are
not shown in the drawing Figures for simplicity and clarity.
Conversely, “(typ)” is not to be construed as meaning the
component, element, etc. is typically used for its disclosed
function, implement, purpose, etc.

In accordance with aspects of the embodiments described
herein, an architecture is provided that defines a message
passing, switched, server interconnection network. The archi-
tecture spans the OSI Network Model Layers 1 and 2, lever-
ages [ETF Internet Protocol for Layer 3, and includes a com-
bination of new and leveraged specifications for Layer 4 of
the architecture.

The architecture may be implemented to interconnect
CPUs and other subsystems that comprise a logical message
passing configuration, either by formal definition, such as a
supercomputer, or simply by association, such a group or
cluster of servers functioning in some sort of coordinated
manner due to the message passing applications they run, as
is often the case in cloud computing. The interconnected
components are referred to as nodes. The architecture may
also be implemented to interconnect processor nodes with an
SoC, multi-chip module, or the like. One type of node, called
a Host, is the type on which user-mode software executes. In

US 9,325,449 B2

5

one embodiment, a Host comprises a single cache-coherent
memory domain, regardless of the number of cores or CPUs
in the coherent domain, and may include various local I/O and
storage subsystems. The type of software a Host runs may
define a more specialized function, such as a user application
node, or a storage or file server, and serves to describe a more
detailed system architecture.

At a top level, the architecture defines the following com-

ponents:

Host Fabric Interfaces (HFIs);

Links;

Switches;

Gateways; and

A comprehensive management model.

Host Fabric Interfaces minimally consist of the logic to
implement the physical and link layers of the architecture,
such that a node can attach to a fabric and send and receive
packets to other servers or devices. HFIs include the appro-
priate hardware interfaces and drivers for operating system
and VMM (Virtual Machine Manager) support. An HFI may
also include specialized logic for executing or accelerating
upper layer protocols and/or offload of transport protocols.
An HFI also includes logic to respond to messages from
network management components. Each Hostis connected to
the architecture fabric via an HFI.

Links are full-duplex, point-to-point interconnects that
connect HFIs to switches, switches to other switches, or
switches to gateways. Links may have different physical con-
figurations, in circuit board traces, copper cables, or optical
cables. In one embodiment the implementations the PHY
(Physical layer), cable, and connector strategy is to follow
those for Ethernet, specifically 100 GbE (100 gigabits per
second Ethernet, such as the Ethernet links defined in IEEE
802.3bj draft standard (current draft 2.2)). The architecture is
flexible, supporting use of future Ethernet or other link tech-
nologies that may exceed 100 GbE bandwidth. High-end
supercomputer products may use special-purpose (much
higher bandwidth) PHYs, and for these configurations
interoperability with architecture products will be based on
switches with ports with differing PHY's.

Switches are OSI Layer 2 components, and are managed by
the architecture’s management infrastructure. The architec-
ture defines Internet Protocol as its OSI Layer 3, or Inter-
networking Layer, though the architecture does not specify
anything in the IP domain, nor manage [P-related devices.
Devices that support connectivity between the architecture
fabric and external networks, especially Ethernet, are referred
to as gateways. Lightweight gateways may offer reduced
functionality and behave strictly at Ethernet’s layer 2. Full
featured gateways may operate at Layer 3 and above, and
hence behave as routers. The Gateway specifications pro-
vided by the architecture include mechanisms for Ethernet
encapsulation and how gateways can behave on the fabric to
permit flexible connectivity to Ethernet data center networks
consistent with the rest of the architecture. The use of IP as the
inter-networking protocol enables IETF-approved transports,
namely TCP, UDP, and SCTP, to be used to send and receive
messages beyond the architecture’s fabric.

FIG. 1 shows a high-level view of a system 100 illustrating
various components and interconnects of the architecture,
according to one embodiment. A central feature of the archi-
tecture is the fabric 102, which includes a collection of the
HFIs and gateways interconnected via the architectures links
and switches. As depicted in FIG. 1, the fabric 102 compo-
nents includes multiple HFIs 104 (one is shown), each hosted
by a respective discrete single node platform 106, an HF1 108
hosted by a virtual platform 110, HFIs 112, and 112,, hosted

10

15

20

25

30

35

40

45

50

55

60

65

6

by respective nodes 114, and 114,, of a multi-node platform
116, and HFIs 118, and 118, of an integrated single node
platform 120, a high radix switch 122, switches 124 and 126,
fabric manager(s) 128, a gateway 130, links 132, 134, 136,
136,,138,140,,140,, 142,144, 148, and additional links and
switches collectively shown as a cloud 150.

As discussed above, switches are a Layer 2 devices and act
as packet forwarding mechanisms within a fabric. Switches
are centrally provisioned and managed by the fabric manage-
ment software, and each switch includes a management agent
to respond to management transactions. Central provisioning
means that the forwarding tables are programmed by the
fabric management software to implement specific fabric
topologies and forwarding capabilities, like alternate routes
for adaptive routing. Switches are responsible for executing
QoS features such as adaptive routing and load balancing, and
also implement congestion management functions.

FIG. 2 depicts the architecture’s layers for transferring data
over the fabric links. The layers include a Physical (PHY)
Layer, a Link Transfer Sub-Layer, a Link Fabric Sub-Layer,
and a Transport Layer. At the left of FIG. 2 is the mapping of
the layers to the OSI reference model under which the PHY
Layer maps to Layer 1 (PHY Layer), the Link Transfer Sub-
Layer and Link Fabric Sub-Layer collectively map to Layer 2
(Link Layer), and the Transport Layer maps to Layer 4
(Transport Layer).

In the architecture, signals are grouped together in the
Physical Layer into ports, which behave, can be controlled,
and are reported as a monolithic entity. A port comprises one
or more physical lanes, wherein each lane consists of two
differential pairs or fibers implemented in the physical trans-
mission medium, one for each direction of communication.
The number of lanes that comprise a port is implementation-
dependent; however, the architecture of the Link Transfer
Sub-layer supports a finite set of port widths. Specific port
widths are supported as fundamental port widths, to allow for
common targets for cable and chip design. The port widths
include 1x, 4x, 8x, 12x, and 16x, where “x” identifies the
number of physical lanes. Under some circumstances, such as
detection of a defective lane, links may run at reduced lane
widths.

The Link Transfer Sub-Layer serves as the interface
between the Physical Layer and the Link Fabric Sub-Layer.
The link Fabric Packets (at the Link Fabric Sub-Layer) are
segmented into 64-bit Flow Control Digits (FLITs, Flits, or
flits, an approximate contraction of Flow Control Digits).
FIG. 3 illustrates an example of a plurality of flits 300 grouped
in a bundle 302. Each flit 300 includes 64 data bits comprising
8 bytes of data.

The Link Transfer Sub-Layer forms multiple lanes into
teams that are capable of transferring flits and their associated
credit return information across the link in a reliable manner.
This is accomplished using 1056-bit bundles called Link
Transfer Packets (LTPs), which are associated with the Link
Fabric Sub-Layer. FIG. 3 also depicts the data portion of an
LTP, which includes 16 flits of data. In addition, LTPs include
flit type information, CRC data, and optional data (not shown
in FIG. 3). Examples of LTPs are illustrated in various Figures
(e.g., 5-11) and described below in further detail.

Fabric Packets are composed of 64-bit flits and a flit type bit
for each flit. The first data flit of a Fabric Packet is called the
Head flit. The last data flit of a Fabric Packet is called the Tail
flit. Any other data flits in a Fabric Packet are called body flits.
An example of a Fabric Packet 400 is illustrated in FIG. 4.

The flit type bit is provided with each flit to distinguish
body flits from other flit types. In one embodiment, Body flits
are encoded with the flit type bit set to 1, and contain 64 bits

US 9,325,449 B2

7

of data. All other flits are marked with the type bit set to 0.
Head flits are encoded with flit[63] set to 1. All other (non
body) flits are encoded with flit[63] set to 0. Tail flits are
encoded with flit[62] set to 1. All other (non body/head) flits

8

the first time as opposed to those that are sent from a replay
buffer which comprise retransmitted or replayed flits.

A link transfer packet holds sixteen flits for transmission
over the link. Reliable L'TPs are held in a replay buffer for

are encoded with flit[62] set to 0. Flit encoding is summarized 5 period of time that is long enough to guarantee that a lack of
in TABLE 1 below. a retransmit request indicates it has been received success-
fully by the link peer. Replay buffer location pointers are
TABLE 1 maintained for each LTP at the transmitter (NxtTxL.TP) and
: : : : — receiver (NxtRxLTP) but are not exchanged as part of the LTP.
Flit Type Bit Flit[63] Flit[62] Description 10 When a transmission error is detected by the receiver, it sends
1 X X Body Data Flit aRetryReqLTP to the transmitter that contains the NxtRx[.'TP
0 0 0 idle, bad packet, and control flits. replay buffer location pointer. In response to receiving a
0 0 1 Tail Data Flit RetryReqL.TP, LTPs in the replay buffer are retransmitted in
0 ! X Head Data Flit the original order, starting with the RetryReqLTP (peer
15 NxtRxLTP) and ending with the last replay buffer location
The control flits are summarized in TABLE 2. The seven written (NxtWrLLTP-1). Null LTPs are not held in the replay
control flits used solely by the link transfer layer (LT control buffer and are not retransmitted.
Flits) are sent in null LTPs. The remaining control flits are Link Fabric command flits may be mixed with FP flits in an
divided into two groups. Fabric Packet (FP) flits include LTP; however, LF command flits are not part of a Fabric
HeadBadPkt, BodyBadPkt and TailBadPkt control flits as 20 Packet. They carry control information from the Link Fabric
well as the normal packet Head, Body, and Tail flits. Link sub-layer at one end of a link to the Link Fabric sub-layer at
Fabric (LF) command flits include Idle, VL.Mrkr and CrdtRet the other end of the link.
flits. FP flits and LF command flits can be intermingled In one embodiment, there are three LTP formats, including
together within reliable LTPs for transmission over the link. a standard detection LTP, a 14-bit CRC LTP, and an enhanced
TABLE 2
Name Generating Sent in LTP Flit Type Description
Idle both Reliable LF Idle.
Command
VLMrkr Link Fabric Reliable LF VL Interleave marker.
Command
CrdtRet Link Fabric Reliable LF VL credit return.
Command
TailBadPkt both Reliable Fabric Tail bad packet.
Packet
BodyBadPkt both Reliable Fabric Body flit in a fabric
Packet packet had an
unrecoverable error
internal to device
HeadBadPkt both Reliable Fabric Head flit in a fabric
Packet packet had an
unrecoverable error
internal to device
Null Link Transfer Single Null LT Control ~ Null.
LTP
RetryReq Link Transfer ~ Null LTP Pair LT Control Retransmit request.
RetryMrkrO Link Transfer Single Null LT Control First Retransmission marker
LTP in Pair.
RetryMrkrl Link Transfer Single Null LT Control ~ Second Retransmission
LTP marker in Pair.
RuodTripMrkr Link Transfer ~ Null LTP Pair LT Control ~ Round trip marker.
RetrainRetryReq Link Transfer ~ Null LTP Pair LT Control Retrain retransmit request.
LinkWidthReq0 Link Transfer =~ Null LTP Pair LT Control First Link width request
in pair. For power
management.
LinkWidthReql Link Transfer =~ Null LTP Pair LT Control Second Link width request
in pair. For power
management.
55

An idle command flit is used by the link fabric layer when
there are no Fabric Packet flits to insert into the data stream.
Ifthe full width of the data path contains idles the link transfer
layer will remove them from the flit stream that is inserted into
the input buffer. If the data path contains both idles and
non-idle flits, the idles will not be removed. This is imple-
mented in order for the link transfer layer to present the
identical data path composition the link fabric layer on the far
side of the link. If the link transfer layer has no flits pending
from the link fabric layer, it will insert idles as original flits are
sent over the link. Original flits are flits sent over the link for

60

65

Detection LTP. An embodiment of a standard detection LTP is
shown in FIG. 5. In addition to the sixteen flits each standard
detection LTP has a 16 bit CRC which covers the LTP con-
tents. For illustrative purposes, the Flits in FIG. 5 are shown as
65 bits where bit 64 is the flit type bit.

Anembodiment of a 14-bit CRC LTP is shown in FIG. 6. In
addition to the sixteen flits, each 14-bit CRC LTP has a two bit
credit sideband channel and a 14-bit CRC that covers the LTP
contents. Flow control credits are transmitted within LTPs
either in special LF command flits or in an LTP credit side-
band channel.

US 9,325,449 B2

9

In addition to the standard detection LTP, the link may also
support an optional enhanced detection LTP holding sixteen
flits and having four twelve bit CRC fields. FIG. 7 shows the
format of an embodiment of the enhanced detection LTP.
Each of the four CRC fields covers all sixteen flits. If any of
the four CRCs are bad the LTP is retransmitted. There are two
CRC calculation options for the four 12 bit CRCs. The first
(48b overlapping) uses four overlapping calculations where
each calculation covers all bits within the LTP. The second
(12b-16b CRC per lane) uses four non-overlapping calcula-
tions where each calculation is limited to all the bits that flow
on one of the four lanes.

As discussed above, LT control Flits used by the link trans-
fer layer are sent in null LTPs. Null LTPs do not consume
space in the replay buffer and are not retransmitted. They are
distinguished using one of the link transfer LT control flits
summarized in TABLE 2 above. Most of the null LTP types
are sent in sequential pairs to guarantee that either at least one
of'the two is received by the link peer without an error or that
aRetrainRetryReq will be automatically generated when they
both have an error. An example of a standard detection null
LTP is illustrated FIG. 8.

Standard detection null LTPs contain a single distinguish-
ing control flit, 975 reserved bits and the standard detection
sixteen bit CRC field. Enhanced detection null LTPs contain
a single distinguishing control flit, 975 reserved bits and the
enhanced detection four 12 bit CRC fields. The two sideband
bits are ignored in a null LTP when using a 14 bit CRC.

One LTP at a time is transmitted over the link for both a 4x
capable port and an 8x capable port connected to a link with
four lanes. This is illustrated using a link fabric data path
perspective for both standard detection and enhanced detec-
tion LTPs in FIGS. 9a and 95, respectively (noting the CRC
fields are not to scale), while an embodiment of a correspond-
ing signal processing and transfer paths is shown in FIG. 10.
A 14-Bit CRC LTP would be similar to the standard detection
LTP illustrated in FIG. 8, except the LCRC[15:0] field would
be replaced with a combination of an LCRC[13:0] field and a
C[1:0] field. The flit transmission order starts with flit 0 and
ends with flit 15.

In one embodiment, the physical transmission of data over
each lane employ a serial two-level bit non-return to zero
(NRZ) encoded bit pattern, which data corresponding to each
lane being decoded, deserialized, and grouped into 4 bytes
per lane per cycle. This results in a transfer of 16 bytes
comprising two flits per cycle. For example, the illustration in
FIGS. 94 and 10 assumes an implementation-specific data
path that is two flits wide, under which flit 0 and flit 1 would
be transmitted at the same time, flit 2 and flit 3 would be
transmitted at the same time, etc. The LCRC is calculated by
the link transfer sub-layer.

FIG. 11 shows an LTP transmission scheme under which
two 4-lane links are ganged to support an 8x datapath under
which data is transmitted over 8 lanes. As illustrated, under
this scheme four flits from two LTPs are processed in parallel
at the interface between the Link Fabric and Link Transfer
sub-layers.

As discussed above, the architecture employs three levels
of data unit granularity to support data transfers: Fabric Pack-
ets, flits, and Link Transfer Packets. The unit of transmission
at the Link Transfer Layer, is an LTP. As depicted, each LTP
is nominally 16 flits long, and as described above the actual
size of an LTP may vary depending on the particular CRC
scheme that is used, and the use of referring to an LTP of
having a length of 16 flits corresponds to the number of 64-bit
flits of data contained in the LTP excluding the CRC bits and
the 16 bit 65’s.

5

10

15

20

25

30

35

40

45

50

55

60

65

10

The Physical layer (also referred to a “PHY”) structure of
one embodiment of a link comprising four physical lanes is
illustrated in FIG. 12. The PHY defines the physical structure
of the link interconnect and is responsible for dealing with
details of operation of he signals on a particular link between
two link peers, such as depicted by components A and B. This
layer manages data transfer on the signal wires, including
electrical levels, timing aspects, and logical issues involved in
sending and receiving each bit of information across the
parallel lanes. As shown in FIG. 12, the physical connectivity
of'each interconnect link is made up of four differential pairs
of'signals, 1200 comprising lanes 0-3 in each direction. Each
port supports a link pair consisting of two uni-directional
links to complete the connection between two peer compo-
nents. This supports traffic in both directions simultaneously.
For purposes of illustration and ease of understanding, the
lane “swizzle” illustrated in FIG. 10 is not shown in FIG. 12;
however, it will be understood that in some embodiments
transmit and receive lanes are swizzled.

Components with link ports communicate using a pair of
uni-directional point-to-point links, defined as link peers, as
shown in FIG. 12. Each port comprises a Transmit (Tx) link
interface and a Receive (Rx) link interface. For the illustrated
example, Component A has a Tx port 1202 that is connected
to Component B Rx port 1204. Meanwhile, Component B has
a Tx port 1206 that is connected to Component A Rx port
1208. One uni-directional link transmits from Component A
to Component B, and the other link transmits from Compo-
nent B to Component A. The “transmit” link and “receive”
link is defined relative to which component port is transmit-
ting and which is receiving data. In the configuration illus-
trated in FIG. 12, the Component A transmit link transmits
data from the Component A Tx port 1202 to the Component
B Rx port 1204. This same Component A transmit link is the
Port B receive link.

As previously stated, the fundamental unit for transfer of
data between link ports is an LTP. Each LTP is specific to
transmission in one direction over a specific link defined by a
transmit port and a receive port at opposing ends of the link.
An LTP has a lifetime of a single link transfer, and LTP’s are
dynamically generated by pulling flits from applicable VL.
buffers and assembling them, 16 at a time, into respective
LTP’s. As depicted by LTP transmit streams 1210 and 1212,
LTPs are transmitted as a stream of flits, with the first and last
flit for individual LTPs delineated by the head and tail flit bits,
as discussed above with reference to FIG. 4.

As discussed above, the architecture defines a packet deliv-
ery mechanism primarily comprising destination-routed Fab-
ric Packets, or FPs, with a Layer 4 payload size of 0 bytes to
10240 bytes. This provides efficient support for sending a
range of messages from simple ULP acknowledgements to
encapsulated Ethernet Jumbo Frames. Fabric Packets repre-
sent the logical unit of payload for ingress to and egress from
an HFI. Fabric packets are so named because they have a
lifetime that is end-to-end in a fabric. More specifically, the
lifetime of a Fabric Packet is the time it takes transfer of the FP
content between fabric end points, as defined by source and
destination addresses for the FP. Each transfer path of an FP
will include transfer across at least one link, and may include
transfer across multiple links when the transfer path traverses
one or more switches.

The use of flits in combination with FPs and LTPs facili-
tates data transfer functionality that is unique to the architec-
ture. In particular, separation of FPs, flits, and LTPs support
use of virtual lanes, as well as various aspects of QoS and
fabric robustness.

US 9,325,449 B2

11

As discussed above, flits are not transmitted singularly, but
are rather groups of 16 flits are packed (bundled) into Link
Transfer Packets. This allows the flits to share a common link
CRC. The flits in an LTP can come from many different
Fabric Packets, which gives the link protocol some interesting
characteristics compared to other fabrics. Through the use of
an efficient packet preemption and interleaving mechanism,
the architecture supports interleaving of the data transfers for
different streams, virtually eliminating head-of-line blocking
effects, even the blocking effect of a large single packet being
physically transferred on a physical link. An illustration of the
relationship between Fabric Packets, flits, and LTPs is shown
in FIGS. 15 and 16, with further description of these figures
described below.

The architecture uses credit-based flow control to manage
the buffer resources at the receiver’s side of the link and
control when a transmitter may send flits. Under this
approach, for a fabric port to send a flit it needs sufficient flow
control credits available for the required buffer space at the
receiving port. In one embodiment, receivers provide a single
pool of receive buffers for the Virtual Lanes (VLs) supported
on a link. The allocation of the buffer pool is managed by
logic on the transmitter side of the link. Dedicated buffers are
allocated for each supported VL. In addition, transmitters
may manage a portion of the space as a shared pool to be
allocated dynamically among the VLs. Credit-based flow
control means that data transfer on the links are rigidly man-
aged; there are no unauthorized data transfers, and it also
means that the fabric is a so-called “lossless” fabric. In this
case lossless means simply that during normal operations
flits, and therefore packets, are never dropped due to conges-
tion.

Control information, such as flow control credits, is carried
in Link Fabric (LF) Command flits and Link Transfer (LT)
Control Flits. LF Command and LT Control flits may be
inserted at any point in the transmitter’s flit stream. In addi-
tion, sideband information in some LTP formats may be used
to transfer credits with even less overhead. LF Command and
LT Control flits are generated by a link transmitter and con-
sumed by the link receiver.

The architecture includes CRCs for Link Transfer Packets
and Fabric Packets to ensure data integrity. The architecture
also provides link-level retry for I'TPs that are not received
correctly. LTP retry significantly improves the effective bit
error rate of the link, and enables the use of PHY strategies
that may trade lower power consumption for a slightly
degraded physical BER. LTP retry is also helpful for large
fabrics where the large number of links in the fabric necessi-
tates much better per link BER characteristics in order to
maintain an acceptable system level error rate.

Preemption and Interleaving

The L2 Link layer permits flits from different packets to be
interleaved when they are sent across a link as long as the
packets are in different VLs. One motivation for interleaving
is to maximize the usage of a given link. If a sending packet
for whatever reason is interrupted by bubbles, a second packet
can then be interleaved into the channel instead of having it to
sit idle. A second reason for interleaving, called preemption,
is to have a higher-priority packet interrupting a lower priority
packet that is being transferred to reduce the latency of the
higher-priority packet.

Under interleaving, all or a portion of a Fabric Packet’s flits
are interleaved with flits from other FPs within the stream of
flits transmitted across the link. A transmitter selects flits for
transmission from among the FPs available to send at a port’s
output queue. In one embodiment, FPs within a single VL are
delivered in order, so within a Virtual Lane all of the flits from

5

10

15

20

25

30

35

40

45

50

55

60

65

12

one packet are transmitted before any flit from a subsequent
packet (in that VL) is transmitted. Across different VLs there
is no ordering specified, so flits from packets in different VLs
may be arbitrarily interleaved within the flit stream (as well as
within a given an LTP, as long as ordering of flits is main-
tained within each VL). Some transmitter implementations
may choose to limit the amount of interleaving between pack-
ets.

Under preemption, flits from a Fabric Packets with a higher
priority level preempt flits from FPs with a lower priority
level. In one embodiment, each Virtual Lane is associated
with a respective priority level. Transmitters are configured to
insert flits from higher priority VLs onto the link L'TPs ahead
of flits from lower priority VLs. Transmitters may choose to
insert the higher priority flits at boundaries larger than a single
flit. Additionally, transmitters may choose to interleave flits
from VLs of the same priority, or they may inject all of the flits
from one packet onto the link before sending flits from a
different packet in a different VL of the same priority.

The receiver on a link separates the incoming flit stream by
VL for insertion into queues and for forwarding to the next
hop (for receivers in switches). Generally, for at least a given
link, the Receiver implementation will support the full scope
of interleaving that may be generated by a Transmitter. In
some embodiments, a similar scope of interleaving is imple-
mented across the fabric. Optionally, different links may sup-
port different levels of interleaving.

In accordance with aspects of packet preemption, flits from
Packet B on a VL having a first priority level (e.g., high
priority) may preempt a stream of flits from Packet A on a
lower priority VL (that is, a VL having a lower priority level
than the first priority level). In this case, the head flit of Packet
A and zero or more body flits from Packet A may be followed
by the head flit from Packet B. This head flit indicates a new
packet is starting and the receiver will look for the SC field in
the L2 header to determine the VL identifier. Packet B’s head
flit will be followed by zero or more body flits and finally the
tail flit terminating Packet B. After the termination of Packet
B, the transmission of Packet A is resumed with zero or more
body flits followed by a tail flit.

Packet preemptions may be nested as packets are pre-
empted by successively higher priority packets (packets on
successively higher priority VLs). In one embodiment, this is
modeled as a linked list with the active packet on the head of
the list. When the current packet is preempted the new packet
is added to the head of the list. When a preempting packet
terminates it is removed from the list and the next expected
packet to resume is the new head of the list. The maximum
number of packets that may be held on the list at one time is
equal to the number of supported VLs.

While the preceding discussion uses priority levels to
describe preemption, there is no requirement that preemption
be used only for higher priority packets. There may be cases
where there are no flits from the current packet available for
transmission (resulting in a “bubble™), yet there is a head flit
available from a lower priority packet. The head flit and
successive body flits from the lower priority packet may be
sent. The new head flit will cause the packet to be added at the
head of the list and the receiver will accurately track the new
packet.

A packet is considered interleaved by a second packet
when the Head flit of the second packet is sent before the Tail
flit of the first packet. In the simplest case of interleaving, all
Body flits following the interrupting Head flit belongs to the
second packet until its Tail flit, after which the remaining
packet flits of the first packet resume. This simple case is
graphically depicted in FIG. 13.

US 9,325,449 B2

13

The group of flits correspond to an order (top to bottom) of
flits in a flit stream. The first flit in the group is the Head flit for
a Fabric Packet being transferred over Virtual Lane 0, which
is labeled VLO. The VL0 head flit identifies that FP as being 4
flits long (a Head Flit, two body flits, and a Tail flit). The
second flit is the first body flit of FP VL0. The next flit is
labeled VL1 Head flit, and it is the Head flit for an FP sent over
Virtual Lane 1, which is labeled VL1. The VL1 Head flit also
identifies this FP as being 4 flits long. Under one approach,
when flits of an FP from a new VL are to be interleaved with
flits from a current VL, the new VL becomes the active virtual
lane for sending flits over the link. This is depicted by adding
the Head flit for VL1 to the flit stream. As a result, FP VL1
interleaves FP VL0, which is depicted by first adding the VL.1
Head flit, two VL1 body flits, and the VL1 Tail flit. The Tail flit
identifies the end of the flits for the FP VL1 FP, which also
completes the FP VL1 interleaving. The logic then returns to
the FP flits prior to the VL1 interleave, resulting in the remain-
ing FP VL0 body flit and Tail flit being sent out over the link.

To further illustrate how the Link Fabric Sub-Layer sup-
ports interleaving of flits from multiple Fabric Packets, FIG.
14 shows an example of Push and Pop interleaving. Interleav-
ing in the Link Fabric Sub-Layer utilizes a push and pop
scheme where an interrupting Head flit causes a push of the
VL that is being interrupted and a pop of the VL in the stack
when a Tail flit is encountered. To visualize how the stack
works imagine a stack of papers in an inbox, along with a desk
area that is used for working on a current paper. In the context
of the Push and Pop interleaving, the stack of papers is
referred to as the “stack” and the desk area corresponds to an
active VL register in which data identifying the active virtual
lane from which flits are being stored. When the VL that is
being transmitted is switched in response to an interleave, the
interleaved VL becomes the new active VL, while the previ-
ous active VL is pushed off the desk onto the top of the stack,
hence the term ‘push.” At the completion of the VL flits for an
FP (e.g., when the Tail flit for the VL FP is added to the LTP
transmit FIFO), the VL is removed from the desk area and the
VL on top of the stack is “popped” off the stack onto the desk
area, thus becoming the new active VL. This pushing and
popping of VLs can continue in a nested manner. With the
Link Fabric Sub-Layer supporting n VLs, the maximum num-
ber of packets that can be simultaneously interrupted is n—1.

In the example of FIG. 14, an ordered list of flits 1400
represent the order that flits from Fabric Packets stored in
various VLs are added to an transmit stream of flits (or option-
ally, shows the order of flits in a flit stream that is received at
a receive port). The following description concerns genera-
tion of an flit stream under which flits are added to an out-
bound stream that is bundled into LTPs (that is, LTPs to be
‘injected’ into the fabric). Indicia identifying the active VL
are depicted at various states in an active VL register 1402.
Under an initial state, indicia corresponding to VL0 is stored
in active VL register 1402, indicating flits are added from the
next Fabric Packet buffered for virtual lane VL0 (referred to
as VLO FP). Accordingly, the first two flits for VL0 FP are
added to the flit transmit stream, at which point an interleav-
ing event is detected initiating VL1 interleaving VL0. To
accomplish this interleaving operation, indicia for VL1
replaces VL0 in the active VL register, pushing VL0 onto the
stack. This switches the active virtual lane to VL1, adding the
Head Flit and first body flit for the VL1 FP to the flit transmit
stream. Next, in response to a second interleaving event,
interleaving of VL2 with VL1 is initiated, loading VL2 into
active VL register 1402 and pushing VL1 onto the stack. This
results in adding all three flits for FP VL2 to the flit transmit
stream. Adding the FP VL2 Tail flit completes the interleaving

10

15

20

25

30

35

40

45

50

55

60

65

14

of VL2 with VL1, resulting in VL1 being popped off the stack
into active VL register 1402. Another body flit for VL1 is
added, followed by initiating VL7 interleaving VL1, which is
effected by adding indicia for VL7 to active VL register 1402
and pushing VL1 back to the stack. The three flits correspond-
ing to the entire VL7 FP are added to the flit transmit stream,
completing the interleaving of VL7 with VL1 and popping
VL1 off of the stack back into active VL register 1402. The
Tailflitofthe VL1 FP is added, completing the interleaving of
VL1 and popping VL0 off the stack into active VL register
1402. This returns VL0 as the active VL, and the last two
packets for the VL0 FP are added to the LTP transmit FIFO.

Instead of relying on the Pop for returning to an implicit VL
that is being interrupted, the Link Fabric Sub-Layer allows a
device to utilize a special LF command flit called the “VL
Marker” to explicitly specify which VL is moved to the head
of'the list. The usage of the VL Marker is less efficient due to
this extra marker flit, but it provides more flexibility for inter-
leaving. The diagram in FIG. 15 illustrates this concept.

The VL. Marker in effect allows a VL to be pulled from the
default stack ordering, or a new VL that is not present in the
stack to be moved to the top of the stack. The VLs that remain
in the stack continues to follow the Push and Pop rules after-
ward. The usage of these two different mechanisms can be
intermixed and are not exclusive. In the case of a particular
VL being pulled from the stack and is then interleaved by
another VL, it is pushed back onto the stack.

Returning to FIG. 15, the sequence of operations begins in
a similar manner to the Push and Pop example of FIG. 14,
wherein the initial active virtual lane is VL0 and the first two
flits of the VL0 FP are added to a flit transmit stream 1500.
Similar to above, next VL1interleaves VL0 for two flits, and
then VL2 interleaves VL.1. However, prior to reaching the
VL2 FP Tail flit, a VL marker 1502 is inserted into the flit
transmit stream, indicating that VL0 is to become the new
active VL. This results in VL0 being pulled from the stack and
loaded into active VL register 1402, and pushes V1.2 onto the
top of the stack. The remaining two flits for VL0 are added to
flit transmit stream 1500, finishing VL0 , resulting in VL.2
being popped off the stack into active VL register 1402. This
adds the Tail flit for VL2, finishing V1.2 and popping VL1off
the stack into active VL register 1402. Another VL.1body flit
is added, following by initiation of VL 7interleaving VL1 ,
which loads VL7 into active VL register 1402 and pushes
VL1from active VL register 1402 onto the stack. A second VL,
marker 1504 is next added to flit transmit stream 1500 to
switch the active virtual lane back to VL1. This pushes
VL7onto the stack and pulls VL1into active VL register 1402.
The VL1FP Tail flit is added, which completes interleaving of
VL1, and VL7is popped off the stack into active VL register
1402. The last two flits for the VL7 FP are then added.

The interleaving examples shown in FIGS. 14 and 15 show
an exaggerated level of interleaving for illustrative purpose,
and for easier understanding of the Push and Pop interleaving
scheme and the VL. marker interleaving scheme. In an actual
system, most interleaving will result from one of two types of
interleaving events: (A) preemption; and (B) bubbles in
packet streams. Further detailed examples of preemptive
interleaving and a combination of preemptive interleaving
and interleaving resulting from a bubble event are shown in
FIGS. 16 and 17, respective.

As described above, under preemption, content (flits) for a
Fabric Packet in a virtual lane having higher priority may
preempt the adding of flits of an FP in a lower-priority VL to
the flit transmit stream. At an HFI, gateway, or other types of
fabric endpoint, the data from which Fabric Packets are built
will generally be initially buffered in some other type of

US 9,325,449 B2

15

format, such as an Ethernet frame that is to be encapsulated in
a Fabric Packet. It is also likely that Fabric Packets may be
created as part of a networking stack, similar to how Layer-3
packets such as IP packets and UDP packets are generated. At
a switch, both the received and transmitted content is already
formatted into flits, with additional metadata used to deter-
mine which flits are associated with which FPs, and what
switch port the flits are to be sent outbound to their next hop
or endpoint destination. In view of the foregoing, FIGS. 16
and 17 depict Fabric Packets as a whole, with the flit format-
ting of the FP content below the FPs.

The flit content for each FP is temporarily stored in a buffer
allocated for the virtual lane to which the FP is assigned.
Under various buffer configuration embodiments, separate
buffers may be allocated to respective VLs, some VLs may
share buffer space, or there may be a combination of the two,
where a first portion of a VLs buffer allocation is private to
that VL, while another portion is a shared buffer space.

A fundamental aspect of using virtual lanes is that content
in a given virtual lane remain in order. This means that, for a
given virtual lane, one FP may not pass another FP. Moreover,
the flits for the FPs also remain in the order they are originally
generated. At the same time, content in different virtual lanes
does nothave to remain in order relative to other virtual lanes.
This enables higher priority traffic to preempt lower priority
traffic. Virtual Lanes are also used to eliminate routing and
protocol deadlocks, and to avoid head of line blocking
between Traffic Classes.

As shown in FIG. 16, there are three buffers 1602, 1604,
and 1606 for respective virtual lanes VI.1 ,VL2,VL3. Each of
these virtual lanes is also assigned a respective priority
level—low priority for VL1 , medium priority for VL2, and
high priority for VL3. An arbiter (not shown) is used to
determine from which VL buffer to pull flits to be added to a
flit transmit stream 1608 in which flits are bundled into LTPs
2,3,4,5,6,and 7. FIG. 16 is a “sliding window” diagram
depicted the processing of link traffic for VL.s VL1, V1.2, and
VL3 over the depicted window timeframe. In one embodi-
ment, VL buffers are implemented as FIFO (First-in, First-
out) buffers, with each FIFO slot sized to store a flit.

As discussed above, under one aspect of preemptive inter-
leaving, FP content assigned to a higher priority VL. may
preempt FP content assigned to a relatively lower priority VL.
Generally, if FP content corresponding to multiple FPs are
buffered in respective VL egress (to be injected into the fab-
ric) buffers, the FP content assigned to the VL with the highest
priority will be added to the flit transmit stream. However, it
is noted that this is not an absolute rule, as there may be
situations under which preemption does not occur. At the
same time, if FP content is only available for a given VL or
multiple VLs with the same priority, that FP content will be
added to the flit transmit stream regardless of the priority
levels of other VLs (that currently do not have any buffered FP
content). This situation is illustrated in FIG. 16, as follows.

Atatime T, at least a first portion of Packet 1 is buffered
in VL1buffer 1602 and ready for transmission. Due to the
streaming nature of data transfers under the architecture, flits
may both be received at (added to) and removed from (for
transmission) VL buffers. Moreover, adding flits to and
removing flits from VL buffers may be somewhat asynchro-
nous, particularly at a switch. As a result, at any given point in
time a given VL buffer may or may not have content that is
buffered and ready to transmit. In the example of FIG. 16, at
time T, only VL1buffer 1602 contains flits ready to transmit,
while both VL2 buffer 1604 and VL3 buffer 1606 are empty.
In order to initiate adding flits for an FP packet to the flit
transmit stream, at least the Head flit or flits (depending on the

25

40

45

50

16
particular FP format) need to be at the head of the VL, FIFO
buffer. (As described in further detail below, in one embodi-
ment VL buffers are implemented as circular FIFOs, with the
FIFO head identified by the FIFO head pointer.) In FIG. 16, a
head flit 1610 is buffered at the head of VL1 buffer 1602 at
time T,.

At time T, a first group of flits 1612 is added to an LTP 2
of flit transmit stream 1608, with head flit 1610 at the begin-
ning of the flits 1612 being added at time T2, with the time
difference between T1 and T2 representing an amount of time
it takes the arbiter to recognize the active VL is to be changed
to VL1buffer 1602 and time to copy flit data from the buffer to
flit transmit stream 1608. The difference between T, and T, in
FIG. 16 is not to scale; but rather is used to illustrate there will
be some finite time between when FP data arrives at a VL
buffer and is ready for transmission and when that data is
actually added to the flit transmit stream.

At time T3, a first portion of Packet 2 has been received at
VL2 buffer 1604, beginning with a head flit 1615. Since V1.2
has a higher priority than VL1, a preemption event is detected
by the arbiter (or other logic, not shown). Depending on the
implementation, a preemption event may be detected very
shortly after the head flit(s) for Packet 2 reaches the head of
the VL2 buffer 1604 FIFO, or there may some delay to reduce
the occurrence of some level of interleaving since extra inter-
leaving may result in causing bubbles at other ports, resulting
in even more interleaving. For example, if a current packet
having flits added to the flit transmit stream has only a few flits
left and the would-be preempting packet is large, the logic
may wait for the current packet to complete such that pre-
emption of the current packet doesn’t occur. In response to the
preemption event, the active VL is switched from VL.1to V1.2
using the Push and Pop interleaving scheme. Optionally, the
VL marker interleaving scheme could be used.

In response to the active VL being switched from VL1to
VL2, indicia for VL2 is loaded into the active VL register and
VL1is pushed onto the stack. As depicted at a time T,,, a first
group of flits 1616 are pulled from the V1.2 buffer 1604 FIFO
and added to flit transmit stream 1608. This results in pre-
emption of the transmission of Packet 1 in favor of Packet 2,
as well as interleaving flits from Packet 1 and Packet 2.

At time T, a first portion of Packet 3 has been received at
VL3 buffer 1604, beginning with a head flit 1618. Since VL3
has a higher priority than VL2, a second preemption event is
detected by the arbiter (or other logic, not shown). This results
in the transmission of Packet 2 being preempted in favor of
transmitting Packet 3, which is effected by loading indicia for
VL3 into the active VL register and pushing VL2 onto the
stack. As depicted beginning at a time T, the entirety of the
flits 1620 for Packet 3 are added to flit transmit stream 1608,
thus interleaving Packet 3 flits with Packet 2 flits.

In connection with adding tail flit 1622 to flit transmit
stream 1608, the arbiter (or other logic) detects that adding
the flits from Packet 3 has completed. Thus, VL3 is removed
from the active VL register, and VL2 is popped off of the stack
into the active VL register, returning VL2 as the active VL.
This results in the remaining flits 1624 of Packet 2 being
added to flit transmit stream 1608, beginning at time T, and
ending at time Ty, at which point it is detected that the tail flit
1626 has been added and thus Packet 2 has completed. This
results in VL.1being popped off the stack into the active VL
register, and VL 1replacing V1.2 as the active VL. The remain-
ing flits 1628 of Packet 1 are then added to flit transmit stream
1608, completing at a tail flit 1630 at a time T,. A head flit for
the next fabric packet is then added as the last flit for LTP7
(the next fabric packet is not shown for simplicity).

US 9,325,449 B2

17

FIG. 17 illustrates a bubble interleaving event, followed by
a preemption interleaving event. When the flits for a Fabric
Packet traverse a routing path including multiple hops, a
portion of the flits may be preempted at one or more switches.
This results in a disruption of the flit stream for a given FP.
When such a disrupted flit stream is received at a receive port,
there is a gap between when the portion of the flits that were
transmitted prior to the preemption and the portion of the flits
that were transmitted after the preemption. This results in a
“bubble.” In addition to this bubble example, bubbles may
also result for various other reasons. In response to detection
of such bubbles, interleaving may be implemented with flits
from FPs having the same or lower priority level as the FP
with the bubble.

As in the example of FIG. 16, at time T, at least a first
portion of Packet 1 including a head flit 1700 is received in
VLIFIFO buffer 1602, and beginning at a time T, a first
portion of flits 1702 is added to an LTP 2 of a flit transmit
stream 1704. At time T3, a first portion of flits for Packet 2 is
received at VL2 FIFO buffer 1604, beginning with a head flit
1706. VL1and VL2 both are assigned a low priority, and thus
each of Packet 1 and Packet 2 are assigned the same low
priority level. Although FPs and/or their flits cannot pass one
another when assigned to the same virtual lane, FPs and/or
their flits are permitted to pass one another when they are
assigned to different virtual lanes. This situation may also
result when the different virtual lanes have the same priority
level. Generally, when FPs in two (or more) virtual lanes
share the same priority level, the FPs are added (via their flits)
to an flit transmit stream in their entirety, e.g., all flits for a first
FP are added, all flits for a second FP are added, etc. The
selection of which FP to send out next from multiple VLs
sharing the same priority level will be a function of the arbiter
selection logic, which generally will be designed to treat
transmission of FPs in the VLs equally (or fairly equally). For
example, in some embodiments a round-robin scheme may be
implemented. Such a round-robin scheme may also consider
the length of FPs, such that the buffer usage level across the
multiple VLs is targeted for some level. For instance, a round-
robin only approach between two VLs would alternate send-
ing of FPs in the VLs, whereas a usage level approach may
transmit a first FP from one of the VLs, followed by second
and third FPs from the other VL if the first FP is significantly
larger than the second and third FPs.

Under the example illustrated in FIG. 17, normally all of
the flits for Packet 1 would be sent, followed by all of the flits
for Packet 2 (presuming there were no preemption interleav-
ing events and only VL1and V1.2 were being considered for
arbitration). However, as illustrated, there is a bubble in the
transfer of flits for Packet 1 beginning at a time T,. The arbiter
logic considers the existence of the bubble in combination
with the availability of flits for Packet 2 in VL.2 FIFO buffer
1604. In response, a bubble interleaving event is detected,
which results in Packet 2 flits 1708 being interleaved with
Packet 1 flits, beginning at a time Ts. As with preemptive
interleaving, the initiation of interleaving begins by loading
VL2 into the active VL register and pushing VL1onto the
stack.

While flits from Packet 2 are being added to flit transmit
stream 1704, at a time T a second (and remaining) portion of
flits for Packet 1 begin to be received and buffered in
VLI1FIFO buffer 1602. Although these flits are available for
immediate transmission, their receipt at time T, does not
create an interleaving event (or otherwise end the interleaving
of flits from Packet 2). Rather, flits from Packet 2 continue to
be added to flit transmit stream 1704 until a preemptive inter-
leaving event is detected at time T, in response to detection of

10

15

20

25

30

40

45

18

the availability of Packet 3 flits including a head flit 1710 in
VL3 FIFO buffer 1606. As in the example of FIG. 16, VL3 has
a high priority level that is also higher than the priority level
for either VL1or VL2. As a result, the availability of flits for
high priority Packet 3 initiates a preemptive interleaving of
Packet 3 flits 1712 with Packet 2 flits, beginning at a time Ty
and completing at atime T, with the addition of a tail flit 1715.
At the completion of the interleaving of Packet 3, VL2 is
popped off the stack and loaded into the active VL register,
thus returning V1.2 as the active virtual lane. This results in
adding Packet 2’s remaining flits 1716 to flit transmit stream
1704.

At the completion of Packet 2, as identified by a tail flit
1718 to flit transmit stream 1704 at a time T, VL1is popped
off the stack and loaded into the active VL register, returning
VL1as the active VL. This results in adding flits 1720 corre-
sponding to the remaining portion of Packet 1 to flit transmit
stream 1704, where the adding of flits for Packet 1 is com-
pleted when a tail flit 1722 is added at a time T ;.

Link Reliability

As discussed above, the architecture’s fabric is “lossless,”
meaning that packets are never discarded upon reception or
otherwise “lost” during transmission. This is accomplished
via a combination of mechanisms that primarily include the
use of credit-based flow control and the use of replay buffers.
Under the credit-based approach, a sending unit (e.g., HFI,
switch, or gateway) will not send flits to a receiving unit (e.g.,
another HFI or switch) unless the sending unit has credit for
transmitting the flits; credits are on per-VL basis and are used
to indicate a receiver has adequate buffer space for the VL that
is to be used for the flits.

Each LTP includes one or more CRCs that are used for
verifying data integrity, depending on whether standard
detection or enhanced detection LTPs are used. The CRC(s)
are calculated over the data content of the LTP and the result-
ing CRC value(s) is/are appended to the end of the LTP,
following the last flit (flit 15), as illustrated in FIGS. 5-8 and
described above. Upon reception, the CRC(s) are recalcu-
lated and a comparison between the CRC(s) and the received
LTP and the CRC(s) in the received data is made to determine
whether there are any data errors. If a transmitted CRC and a
CRC calculated over the received data do no match, a data
error is detected. In response to detection of a CRC mismatch,
the LTP is retransmitted through use of a replay buffer.

‘Reliable’ LTPs are held in a replay buffer for period of
time that is long enough to guarantee that a lack of a retrans-
mit request indicates it has been received successtfully by the
peer. Under this approach, a receiver does not send ACKs to
acknowledge a packet has been successfully received; rather,
the lack of a retransmit request within a round trip time period
provides an implicit acknowledgement that an LTP has been
successfully transferred across a link. The use of the term
‘reliable’ LTPs is to distinguish LTPs that are held in the
replay buffer from other L'TPs that are not held in the replay
buffer, such as null LTPs. Accordingly, null LTPs are not
retransmitted.

Replay buffer location pointers are maintained for each
LTP at the transmitter (NxtTXLTP) and receiver (NxtRxL'TP)
but are not exchanged as part of the LTP. When a transmission
error is detected by the receiver (viaa CRC mismatch) it sends
aRetryReqLTP to the transmitter that contains the NxtRx[.'TP
replay buffer location pointer. Upon receipt of the
RetryReqL. TP at the transmitter, the LTPs in the replay buffer
are retransmitted in the original order, starting with the
RetryReqL.TP (peer NxtRx[TP) and ending with the last
replay buffer location written. In one embodiment, a next

US 9,325,449 B2

19
replay buffer slot to write LTP data to (NxtWrLTP) is used,
and thus the last replay bufter location written is NxtWrL.TP-
1.

In connection with detection of a link error indicated by a
CRC mismatch, a second mechanism is implemented to
determine which lane is errant. This mechanism employs a
per-lane CRC that is only calculated at the receiver and does
not use a comparison to a per-lane CRC in the transmitted
data (as none exists). Rather, the per-lane CRC is used to
compare per-lane CRCs that are calculated for an LTP with a
CRC mismatch to corresponding per-lane CRCs that are
recalculated for the same LTP when it is retransmitted via the
replay buffer, either on a per-lane or per transfer-group basis,
as discussed below.

An example of usage of a replay buffer along with usage of
per-lane CRCs to detect errant lanes is illustrated in FIGS.
18a and 18b. In this example, an LTP transmit stream includ-
ing ITPs 2,3, 4, 5, 6, and 7 of LTP transmit stream 1604 are
being transmitted from a link interface A of a device A to a
link interface B of a peer device B at the other end of the link.
More specifically, the LTP transmit stream is transmitted
from a transmit port 1800 of link interface A to a receive port
of'link interface B using a four-lane link interconnect similar
to that shown in FIG. 17 discussed above. Under the archi-
tecture’s links, LTP content is sent serially over multiple lanes
in parallel. As discussed above, the number of lanes may vary
depending on the particular link configuration; in addition,
transfers on links that have a reduced number of lanes are also
supported. By way of example and without limitation, a
single bit is transmitted over each lane during a time period
referred to as a Unit Interval (UI). In one embodiment, trans-
fer of LTP data is segmented into a data unit referred to as a
transfer unit (XFR). In one embodiment, each XFR is 32-bit
quantity. In one embodiment, all bits of an XFR are transmit-
ted using the same lane. In some embodiments, some XFRs
may be transmitted over multiple lanes.

FIG. 19 illustrates a mapping of XFRs for a standard detec-
tion LTP, which has a length of 1056 bits. Each XFR is 32 bits
in length and is transferred over a single lane. Accordingly,
there are 33 XFRs for each LTP. FIG. 20 shows the per-lane
XFR mapping for a four-lane link, according to one embodi-
ment. Nominally, for illustrated purposes and simplicity, each
flit is 64-bits. However, as illustrated in FIG. 3, each flithas an
extra 65” bit that is used in whole (for Body flits) or in part
(for Head and Tail flits and control flits) to identify its flit type.
During transmission, the 65” bits are transmitted in-line,
meaning, upon deserialization and reassembly of the serially-
transferred bit streams transmitted in parallel over the mul-
tiple lanes, the 65 bits are present every 65 bit position in
the 1056 bit standard detection LTP.

In one embodiment of a four-lane link, data bits for two flits
are transferred over the link in parallel over 32 UL, such that
128 bits comprising four XFRs are (logically) transferred
together. However, as stated above, every 657 position is
occupied by a flit type bit. As result, XFRs do not map exactly
2:1 with flits. Rather, the in-line presence of the extra 65 bits
results in a wrapped transfer, as illustrated in FIG. 21.

In further detail, in one embodiment an extra two bits are
wrapped for each 128 UI, resulting in an aggregation of 16
bits after 8 groups of four-lane XFRs are completed. These 8
groups, comprise the first 32 XFRs, with the 33" XFR com-
prising the last 16 bits of flit 15 (plus its 65 bit), followed by
a 16-bit CRC (or optionally, a 14-bit CRC plus 2 control
channel bits for a CRC-14 LTP). For illustrative purposes and
ease of understanding, flits may be illustrated herein as being

15

20

40

45

50

55

20

transferred in units of 64-bits; however, it will be understood
that in one embodiment flits are actually transferred in units of
65-bits.

Returning to the four-lane XFR mapping of FIG. 20, the
use of 33 XFRs per 1056-bit standard detection LTP results in
a wrapping of one XFR for each LTP. This, in turn, shifts the
starting point of each following L'TP to the next lane, in
accordance with an LTP starting lane sequence of Lane 0,
Lane 1, Lane 2, Lane 3, return to Lane 0, Lane 1 . . . etc. This
is referred to herein as a four-lane standard-detection LTP
‘sequence,” or simply TP sequence for short (as applied to
the standard-detection LTP transfers over four lanes illus-
trated and discussed herein). For convenience, the LTP
sequence states are illustrated as 1°,27%, 377 and 47, although
in one embodiment it is tracked as 0, 1, 2, 3 using two bits.

As shown in FIG. 18a, serialization and mapping of flits in
LTP transmit stream 1604 is performed by a transmit link
control block 1804 (or otherwise a portion of this operation is
performed by another block that is not shown). Prior to being
processed by transmit link control block 1804, the data con-
tent for each reliable LTP is copied into one of the LTP slots
in a replay buffer 1806, wherein the slot is identified by a
NxtWrLTP pointer 1807. Generally, the replay buffer may
have a variable-size, or a predetermined-size. In one embodi-
ment, the replay buffer may be selectively configured to one
of multiple predetermined sizes.

As illustrated, in one embodiment, the replay buffer is
implemented as a circular FIFO with a next transmit L'TP
(NxtTxLTP) pointer 1808 having a value that wraps from the
last FIFO slot back to the first FIFO slot (wraps from slot 7 to
0 in this example). The use of a circular FIFO results in prior
LTP data (corresponding to previously transmitted LTPs)
being overwritten by new (next to be transmitted) LTP data;
however, measures are provided to ensure that no LTP data is
overwritten until an implicit acknowledgement that the LTP
data has been successfully transferred is detected, as detailed
below. This scheme facilitates reliable transmission of data
over a link without requiring the use of explicit ACKs, thus
reducing the overhead associated with use of ACKs. This also
reduces the buffering at transmit ports necessary for support-
ing ACK-based reliable transmission schemes used for pro-
tocols above the link layer (such as TCP).

With reference to flowcharts 2200a-e of FIGS. 22a4-22¢
and the transmitter and receiver state machine diagrams 2370
and 2350 of FIGS. 23a and 235, handling of link errors
including detection of errant link lanes is implemented in the
following manner, according to one embodiment. During a
link initialization process, various information is exchanged
between the peer transmit and receive ports of the link’s
interfaces, establishing a bi-directional communication link.
During this process, the replay buffer’s NxtTxL.TP pointer
1808 and a corresponding next receive LTP (NxtRxLTP)
pointer 1810 on the receive side are initialized to 0. Upon
successful link initialization, the link transfer mode is set to
“normal” as depicted by a start block 2202 and the LinkTrans-
ferActive.normal states for the transmitter and receiver in
FIGS. 23a and 23b, and L'TPs are ready to be transferred
across the link. For clarity, the following focuses on data
being transferred in one direction; similar operations are per-
formed in the reverse direction (using a separate set of lanes)
to support bi-directional communication over the link.

As the LTPs in LTP transmit stream 1604 are sequentially
transmitted, the LTPs’ data are sequentially copied into
replay buffer 1806, with NxtTxLTP pointer 1808 advancing
one slot per LTP (or wrapping back to 0 once the last slot
(MyLTPmax) is reached. For the illustrated example state in
FIG. 18a, LTPs 2-6 have been previously transmitted from

US 9,325,449 B2

21

transmit port 1800, with LTPs 2 and 3 having been previously
received by receive port 1802, were processed by a Rx Link
Control block 1805, and were determined to be good LTPs
based on LTP CRC matches. LTP 4 is about to be received,
while LTPs 5 and 6 are in-flight (data for these L'TPs has been
sent outbound from the transmitter port 1800, but have yet to
be received at receive port 1802).

Returning to flowchart 2200a, the main flowchart loop
begins inablock 2204 in which an LTP is received at a receive
port. Inthe example of F1G. 184, this operation is depicted by
LTP 4 being received at receive port 1802. As depicted in a
block 2206, for each lane, a CRC is calculated based on the
data received over that lane during the applicable LTP
sequence state, and the CRC is written to per-lane CRC reg-
isters, as depicted by CRC lane registers CRC-L.O, CRC-L1,
CRC-L2, and CRC-L3. In one embodiment, the data in these
registers is overwritten by the CRC calculation results for the
current LTP, such that the CRC lane registers only store data
for the most recently-processed LTP. In one embodiment, the
per-lane CRC for a four-lane link is a 12-bit CRC that is
dynamically calculated as bits for each lane are received.

Inablock 2208, a CRC for the received LTP data (Rx CRC)
is calculated, and compared to the Tx CRC in the transmitted
LTP. The Tx CRC is calculated by transmit port 1800 using
the LTP data that is to be transmitted to the receiver and is
appended at the end of the LTP, as illustrated in the various
LTP formats herein. The receiver extracts the TX CRC from
the received LTP data and compares the Tx CRC with an Rx
CRC calculated over the received LTP data. In a decision
block 2210 a determination is made to whether the received
Tx CRC and the calculated Rx CRC match. If they match, the
LTP is deemed good, and normal processing of the LTP data
is performed, as depicted in a block 2212, and the logic
returns to block 2204 to process the next received LTP.

In the example shown in FIG. 18a, the Tx CRC and Rx
CRCs do not match (CRC mismatch) for LTP 4, which indi-
cates an LTP data error. Link data errors may result from
various link conditions, and at this point the particular link
condition causing the error is unknown; what is known is the
LTP data that is received is different than what was transmit-
ted, and thus the received LTP has errant data and will not be
processed further. The mismatched LTP CRC corresponds to
a NO result for decision block 2210, causing the logic to
proceed to a block 2214 in which the LTP is depicted as being
bad, as also depicted by RevBadL TP in receiver state diagram
2350. In response to detection of a bad LTP, multiple opera-
tions are initiated and performed substantially in parallel, as
depicted by the operations in each of blocks 2216 (in FIGS.
22a, 2218, and 2220 (in FIG. 22b).

As depicted in block 2216, the per-lane CRC values that
were calculated for a bad LTP are stored on a per-lane or per
XFR-group basis. If the number of XFRs per LTP is evenly
divisible by the number of lanes, then the per-lane CRC
values are stored on a per-lane basis; otherwise, they are
stored on a per XFR-group basis. For example, for a link with
three active lanes and 33 XFRs, per-lane CRC values are
stored, since 33/3=11. Conversely, for either four or two
lanes, the per-lane CRC values are stored on a per XFR-group
basis (33/4=7.5 and 33/2=16.5). If per XFR-group CRCs are
stored, the receive LTP sequence state is stored in a register
1814.

An example of per XFR-group CRCs is illustrated in FIG.
24. As shown, the number of XFRs for which the per-lane
CRCs are calculated is not equal across the four lanes; rather,
one of the lanes will receive 9 32-bit XFRs (and thus 288 bits)
per standard detection LTP, while the other three lanes will
receive 8 32-bit XFRs (and thus 256 bits). Moreover, the lane

10

15

20

25

30

35

40

45

50

55

60

65

22

receiving 9 32-bit XFRs will depend on the LTP sequence
state. As will be discussed in further detail below, the stored
per-lane CRCs are used to detect which lane or lanes pro-
duced the error by comparing the per XFR-group CRCs foran
LTP having a CRC mismatch and a subsequent retransmis-
sion of the same LTP. Since the LTP sequence used for the
original LTP transmission may be different than the LTP
sequence used for the retransmitted TP, per XFR-group
CRCs are employed. The per-XRF group CRCs will result in
comparing CRCs calculated over the same XFRs, whereas if
a per-lane CRC scheme was used this may or may not result
in the CRC calculations being over the same XFRs when
operating a link with four lanes (25% chance of being the
same) or two lanes (50% chance of being the same).

As shown in FI1G. 24, the per XFR-group CRCs are labeled
CRC-GO, CRC-G1, CRC-G2, and CRC-G3. The transfers
over which these CRCs are calculated will depend on both the
lane and the LTP sequence state. For example, for the first
LTP sequence state, CRC-GO s calculated from the 9 XFRs 0,
4, 8,12, 16, 20, 24, 28, and 32 received on lane 0, while the
calculated values for CRC-G1, CRC-G2, and CRC-G3 will
depend on the 8 XFRs depicted for lanes 1, 2, and 3, respec-
tively. Under the second LTP sequence state, CRC-GO is
calculated from the 9 XFRs on lane 1, while the calculated
values for CRC-G1, CRC-G2, and CRC-G3 will depend on
the 8 XFRs depicted for lanes 2, 3, and 1, respectively. A
similar approach is used for both the 3"“ and 4” LTP sequence
states, as shown.

During the timeframe depicted in FIG. 18a, the LTP
sequence state is 1, and thus CRC-GO, CRC-G1, CRC-G2,
and CRC-G3 are respectively calculated from data received
for LTP 4 on lanes 0, 1, 2, and 3. Exemplary calculations for
LTP per XFR-group CRC-GO, CRC-G1, CRC-G2, and CRC-
(3 values are shown in FIGS. 184 and 25, and are respec-
tively are 428, 556, 208, and 804. These per XFR-group CRC
values are stored in registers CRC-G0, CRC-G1, CRC-G2,
and CRC-G3.

Continuing at flowchart 22005 in FI1G. 225 at block 2218,
a retransmit request (RetryReq LTP 1812) is returned from
the receiver to the transmitter, identifying the bad LTP via the
current value for NxtRxLTP pointer 1810. In one embodi-
ment a sequential pair of RetryReq L'TPs are sent, while in
another embodiment a single RetrReq LTP is sent. In this
example, the NxtRxLTP pointer value points to replay buffer
slot 4, which stores data for LTP 4, the bad LTP. Details of the
transmitter-side operations when in replay mode that are ini-
tiated in response to receiving RetryReq L'TPs are shown in
flowchart 2200¢ of FIG. 22¢.

Also upon detection of a bad LTP in block 2216, the LTP
receive mode is set to ‘L’TP-tossing’ in a block 2220, resulting
in received LTPs being tossed (discarded), including the bad
LTP. LTP-tossing mode is depicted as an LTA.RxTossing
state in receiver state diagram 2350. While the receiver is
operating in [TP-tossing mode, LTPs are received, per-lane
CRCs are calculated and registers updated, LTP CRC error
checks are performed to detect sequential LTP CRC errors,
and LTPs are discarded. These operations are performed in a
loop-wise manner beginning with receiving an L'TP in a block
2222. As before, the operations of blocks 2206 and 2208 are
performed, followed by a determination made in a decision
block 2224 to whether the received LTP has a CRC error (Tx
CRC and Rx CRC mismatch). While the receiver is operating
in LTP tossing mode, the logic is configured to check occur-
rences of sequential LTP CRC errors. For example, if the first
received LTP after entering LTP-tossing mode has an error,
sequential errors have occurred. The determination for
detecting sequential errors is depicted by a decision block

US 9,325,449 B2

23
2226, to which the logic proceeds if the answer to decision
block 2224 is YES. In addition, a total LTP CRC error count
in incremented in a block 2225. (It is also noted that the total
LTP CRC error count is incremented in response to detection
of'each LTC CRC error, whether in normal mode or tossing
mode).

CRCs are data integrity checks that are configured to detect
errors in transmitted data units, such as packets, frames, etc.
The mathematical formulation of a CRC is selected such that
the CRC will detect bit transmission errors, and also takes
advantage of the binary nature of digital data, enabling CRCs
to be quickly calculated over binary quantities. However,
CRCs are not 100% failsafe. The CRC check can fail to detect
errors when the number of bit errors equals or exceeds the
Hamming distance of the CRC. The Hamming distance of
CRCs used in network fabrics is typically 4, meaning it takes
at least 4 bit errors to open up the possibility (extremely low
probability) that the errors would go undetected. Undetected
link errors result in what is referred to as “false packet accep-
tance,” meaning a packet with errors passes the CRC check
(falsely), and is thus accepted for further processing. These
undetected errors result in packet silent data corruption.

LTPs are approximately 1000 bits in size. At a given aver-
age bit error rate (BER) the probability of a missed detection
is higher if the errors are correlated and occur in bursts (of 4
or greater) within a single link transfer packet vs. error pat-
terns that are uniform where the errors are distributed in time
across multiple LTPs.

Network fabric links are designed to provide a very low, but
non-zero, BER. The desire to reduce link power provides
motivation to allow higher BER, which tends to increase as
power is reduced. As the BER increases the probability of a
missed error detection increases. At some point this probabil-
ity becomes unacceptably high. The BER across the many
links within a fabric are non-uniform. The links are typically
composed of multiple lanes and the BER can vary widely
across the lanes within a given link. Under a conventional
approach, when the fabric management software detects a
link running at some threshold BER it is forced to remove the
link from the fabric to avoid the unacceptably high probabil-
ity of data corruption. This is done without knowledge of the
error distribution within the link and forces the use of a
conservative smaller BER threshold that assumes the errors
are correlated. In addition, the BER of links may drift and/or
degrade over time and become unacceptably high. The fabric
manager can’t monitor all links continuously in real-time all
the time; as a result it may take some time to detect a link is
operating at too high a BER. During this time the fabric is
exposed to the potential for data corruption.

One check for closely-spaced bit errors is through use of
the LTP CRC error check in decision block 2224 and the
sequential LTP CRC error check in decision block 2226.
While CRCs can be used to identify at least one error is
detected, they don’t identify how many errors are present.
However, sequential LTP CRC errors indicate at least two
errors are present in sequential UTPs. In one embodiment, in
response to detection of sequential LTP CRC errors a pair of
RetrainReq LTPs are sent to the transmitter in a block 2228
resulting in the flowchart logic exiting to retrain the link, as
depicted by an exit block 2232 and RcvRetrainReq in trans-
mitter state machine 2300. In one embodiment this retraining
is a lightweight retrain that is less complex than the link
(re)training operations employed when initializing or reini-
tializing a link. During training or reinitialization the link’s
normal active transfer state is offline, meaning that normal
data transfer operations are temporarily unavailable until the
link returns to is normal active transfer state upon completion

10

20

25

30

35

40

45

50

55

60

65

24

of link training or link reinitialization. In addition, the
receiver sets some internal indicia to indicate it sent the
RetrainReq LTPs in a block 2230, and a link sequential error
timer is reset in a block 2231, with further details of the link
sequential error timer usage shown in FIG. 22e and discussed
below. Upon completion of the training sequence, the logic
returns to flowchart 22005 at blocks 2218 and 2220, wherein
(a) retry request LTP(s) is/are sent back to the transmit side
and the LTP-tossing mode is re-entered at the receiver.

The LTP-tossing mode loop is exited in response to receiv-
ing a retry marker LTP, and, accordingly, if the received LTP
does not have a CRC error, the logic proceeds to a decision
block 2234 in which a determination is made to whether each
received good LTP while in L'TP-tossing mode is a retry
marker. Prior to receiving the retransmit request, the trans-
mitter will continue transmitting I'TPs in sequence, and these
LTPs will be received along with the LTPs that are already
in-flight (if any). As shown in blocks 2238, 2240, and 2242 in
flowchart 2200¢ of FIG. 22¢, upon receipt of the retransmit
request (RetryReq LTP), the transmitter will send out a retry
marker, followed by retransmission of LTPs in replay buffer
1806, beginning with the LTP in the slot indicated by the
NxtRxLTP pointer value returned via the retransmit request.
In one embodiment, a single retry marker is sent, while in
another embodiment a pair of retry markers are sent sequen-
tially. In one embodiment, the pair of retry markers are iden-
tified by the order they are sent (e.g., RetryMrkr0, RetryM-
rkrl). In one embodiment, each of the retry markers comprise
null LTPs. An example of the use of a single retry marker,
depicted by a RetryMrkrLTP 1816, is shown in FIG. 185. It
will be understood that when a pair of retry markers are sent,
a second retry marker (RetryMrkrl) would immediately fol-
low RetryMrkr’TP 1816 (RetryMrkr0).

In the example of FIG. 18a, this continuation of transmit-
ting LTPs before receipt of the retransmit request results in
receiving, in order, LTPs 5 and 6 (in flight), 7 (next transmit-
ted), and LTPs 0 and 1. Since each of LTPs 5,6, 7, 0 and 1 are
not retry markers, the answer to decision block 2234 is NO for
each, and the logic proceeds to discard the LTP in a block
2236 and then loop back to block 2222 to receive the next
LTP, while remaining in LTP tossing mode. Processing of
subsequently-received L'TPs continues in the same manner
until a retry marker LTP is received and detected in decision
block 2234.

FIG. 1856 depicts a timeframe at which a RetryMrkr TP
1816 has been transmitted, received, and processed by receive
port 1802, LTP 4 has been retransmitted and is being received
by receive port 1802, followed by retransmitted LTPs 5 and 6
(in flight), with LTP 7 about to be retransmitted. Each of LTPs
4,5, and 6 comprise “replayed” LTPs. As also shown in FIG.
18b, the replay buffer data in slots 0 and 1 (shown in FIG. 184a)
is overwritten with corresponding flit data for LTPs 0 and 1 in
connection with their original transmission, which occurred
prior to receiving RetryReqLTP 1812 and transmitting
RetryMrkr TP 1816.

As before, for each reliable LTP transmission the LTP’s
data is copied into a slot in replay bufter 1806 as identified by
NxtTxLTP pointer 1808, which is incremented for each reli-
able LTP. Thus, NxtTxLTP pointer 1808 will have been incre-
mented in connection with sending each of LTPs 7, 0, and 1
(noting the NxtTxLTP pointer wraps from 7 back to 0). While
LTP 1 is being transmitted (or shortly before), transmit port
1800 has received RetryReqL.TP 1812. In response, transmit
port 1800 returns RetryMrkel.TP 1816 (or a pair of retry
markers comprising a RetryMrkrO LTP followed by a
RetryMrkrl LTP). Since RetryMrkr.TP 1816 is a null LTP,
its data content is not copied to replay buffer 1806, nor is

US 9,325,449 B2

25
NxtTxLTP pointer 1808 advanced. Conversely, the Tx LTP
sequence state is advanced for each transmitted LTP, regard-
less of whether it is a reliable LTP or a null LTP.

Returning to decision block 2234, upon receipt of RetryM-
rkeL.TP 1816 it is identified as a retry marker, and the flow-
chart logic proceeds to flowchart 22004 in FIG. 22d. As
shown in a block 2252, the retry marker is processed, and the
receiver sets a countdown value to prepare for receipt of a
forthcoming replayed bad LTP. In one embodiment, a bad
LTP replay offset is employed relative to the retry marker, so
as to indicate a retransmission of the bad LTP will commence
k LTPs after the retry marker. In one embodiment employing
a pair of retry markers, the bad LTP replay offset is one less
for the second retry marker. As also depicted in block 2240, in
view of the bad LTP replay offset, the receiver initiates a bad
LTP replay countdown based on the LTP offset. This is used
to detecta replay of a bad LTP in a block 2256. In addition, the
receiver returns a roundtrip marker LTP in a block 2254 (or a
pair of roundtrip marker LTPs) and the TP receive mode
(receive state) is returned to normal in a block 2254, with the
flowchart logic returning to block 2204 to receive the next
packet. This is depicted by the Send RndTripMrkr Pair state
and return to the LinkTransferActive.normal state in receiver
state diagram 2350. As described below with reference to
FIG. 18c, the roundtrip marker LTP(s) is/are returned in
response to the retry marker LTP(s) to facilitate determination
to whether replay buffer LTPs can be overwritten.

Following transmission of RetryMrkr[L.TP 1816 (or
RetryMrkrOLTP and RetryMrkr1LTP), replay (retransmis-
sion) of LTPs is initiated, beginning with retransmission of
the bad LTP identified by the NxtRxLTP pointer returned in
RetryReqL’TP 1812 (TP 4 in this example). While the trans-
mitter is in replay mode, the transmitted data will comprise a
retransmission of L'TPs stored in replay buffer 1806. The
retransmitted LTPs are sent out sequentially from transmit
port 1800 based on their order in the replay buffer’s FIFO and
beginning with the LTP pointed to by the NxtRxL'TP pointer.

For each retransmitted LTP, the transmitted data is the same
as when the LTP was originally transmitted. Outside of the
bad LTP replay countdown (and operations associated with
receiving areplayed bad LTP), the receive-side logic is agnos-
tic to whether received LTP data corresponds to an originally-
transmitted LTP or a retransmitted LTP. Accordingly, the
operations of blocks 2204, 2206, and 2208 and decision block
2210 are performed, resulting in per-lane CRC calculations,
calculation of an Rx LTP CRC over the received LTP data,
and comparing the Rx LTP CRC to the Tx LTP CRC. If there
is an error, as indicated by a NO result in decision block 2210,
the logic returns to block 2214, with the errant retransmitted
LTP initiating a new replay sequence under which the bad
LTP will again be retransmitted. This will essentially repeat
the operations discussed above in connection with retrans-
mission of bad LTP 4 and its following LTPs from replay
butfer 1806.

Presuming the retransmitted bad LTP 4 is good, the logic
flows to a block 2258. In this block the per-lane CRC values
that were previously stored in registers CRC-G0, CRC-G1,
CRC-G2, and CRC-G3 are compared to per-lane CRCs cal-
culated for data received over each lane for the retransmitted
LTP 4, with the comparison made on a per-lane or per XFR-
group basis, depending on the number of operating lanes
(noting that per-lane and per XFR-group comparisons are
equivalent when the number of transfer groups are the same,
such that a per XFR-group comparison could always be per-
formed) From above, per-lane CRCs are compared on a per
XFR-group basis for a four-lane link.

20

40

45

55

26

In connection with continued incrementing of the Tx LTP
and Rx LTP sequence states for each transmitted LTP, when
LTP 4 is retransmitted the LTP sequence state is 3, as com-
pared with an LTP sequence state of 1 when LTP was origi-
nally transmitted. As a result, the XFR group transmitted
across each lane has changed. This remapping of lane-XFR
groups is illustrated in FIG. 25, and can also be seen by
comparing the XFRs sent over each lane in FIGS. 184 and
18b. As discussed above, when LTP 4 was originally trans-
mitted, the LTP sequence state was 1, while when LTP 4 is
retransmitted (depicted by 4R in FIG. 25) the LTP sequence
state is 3.

Returning to FIG. 185, the per-lane CRCs for retransmitted
LTP 4 are calculated for lanes 0, 1, 2, and 3, and then a per
XFR-group CRC comparison is performed in block 2258 of
flowchart 22004, and the bad lane is identified in a block 2260
by identifying the mismatched per-lane or per XFR-group
CRCs, as applicable. In the example of FIGS. 184 and 185,
the result of the per XFR-group CRC comparison indicates
the CRCs for CRC-GO, CRC-G1 and CRC-G3 match, while
the CRCs for CRC-G1 do not match. This indicates that lane
2 is errant, since lane 2 corresponded to the XFR group over
which the CRC-G1 value was calculated for the errant TP 4
when it was originally transmitted, noting that since there was
no LTP CRC error detected in retransmitted LTP 4 there also
is (presumably) no error in the data transmitted over lane 2 for
the replayed LTP 4. In a block 2261 the error count for the bad
lane that is identified is incremented.

Consider a scenario where a lane is intermittently errant.
As discussed above, the sequential LTP CRC error check of
decision block 2226 and associated logic blocks is one
mechanism for detecting closely-spaced errors in data trans-
mitted over the link. While this mechanism detects very-
closely spaced errors (requiring errors in sequential LTPs), it
cannot identify which lane is errant, nor how frequent sequen-
tial errors on individual lanes are occurring.

According to embodiments of a second BER check mecha-
nism, a per-lane error frequency is monitored to determine
whether the error frequency (BER) for a given lane exceeds a
per-lane BER threshold. In one embodiment, this is accom-
plished through the use of per-lane sequential error counters
and a timer (in connection with other operations and logic
depicted in flowcharts 22004 and 2200e and performed in a
parallel manner).

In a decision block 2262 a determination is made to
whether the receiver state is coming out of a link retraining
state initiated by the receiver. As shown by the logic in flow-
chart 22005 and described above, detection of sequential LTP
CRC errors will result in link retraining initiated by the
receiver detecting the errors. Conversely, while a single LTP
CRC error will likewise initiate a retry request, retry marker
receipt sequence, it will not result in initiating of link retrain-
ing. If the replayed LTP is good and the receive state is not
coming out of link retraining (that is, only a single LTP CRC
error has been detected), the answer to decision block 2262 is
NO, causing the logic to flow to a block 2264 in which the
LTP is processed as if it was an originally-sent LTP. The logic
then returns to flowchart 22004 to process the subsequently
replayed LTPs as (from the perspective of the receiver) they
are being originally sent.

Now presume that two sequential LTP CRC errors were
detected by the receiver, resulting in link retraining initiated
by the receiver and the answer to decision block 2262 is YES,
resulting in the logic proceeding to a block 2266. In this
block, the sequential error counter for the bad lane that was
determined in block 2260 is incremented. In a decision block
2268 a determination is made to whether the sequential error

US 9,325,449 B2

27

count for the lane has reached a threshold. In general, the
threshold will be an integer number, such as 1, 2, etc. In one
embodiment, the threshold is 2, such that 2 sequential errors
on one lane within one timer period causes the lane BER
threshold detection to be tripped. In response, in one embodi-
ment the logic proceeds to an exit block 2270 under which the
link is reinitialized with the lane detected as being bad
removed. As a result, the number of active lanes for a link will
be reduced by one lane, such as a four-lane link being
degraded to three active lanes.

If the per-lane sequential error count has not reached the
threshold, the answer to decision block 2268 is NO, and the
logic proceeds to block 2204 to receive the next LTP with the
receiver operating in its normal receive state and the trans-
mitter still operating in replay mode.

As discussed above, in one embodiment a timer scheme is
used to detect the frequency of per-lane sequential errors.
From above, the logic proceeds to block 2231 in response to
detection of sequential bad L'TPs, and a set of parallel opera-
tions for implementing the timer scheme are initiated, as
shown in flowchart 2200e of FIG. 22e. Ina block 2272 a timer
is started (the first time) or restarted (reset), as applicable. As
depicted by a decision block 2274 and the loop back to itself,
the timer is periodically checked to determine whether it has
expired, or optionally the timer logic can be configured to
generate an interrupt or other indicia to indicate it has expired.
At the expiration of the timer the bad sequential error counter
for each lane is decremented, as depicted in a block 2276. In
one embodiment, the minimum bad error count is 0, so for a
lane error count that is already 0, its count is not decremented.

The combination of the parallel processes detects that
errors on an individual lane have exceeded a frequency
threshold (e.g., identifies lanes exhibiting closely-spaced
errors) in the following manner. Each time the flowchart
operations results in the logic flowing through blocks 2258,
2260, and the result of decision block 2264 is YES, the
sequential error count for a bad lane will be incremented.
Meanwhile, in consideration of the parallel timer operations,
each time the timer expires without being restarted indicates
that the timer’s time period has passed without a per-lane
error, thus the per-lane sequential error count for each lane is
decremented by one (to a minimum of zero). In one embodi-
ment, two strikes and the lane is out, which corresponds to a
lane having two sequential errors within the timer period.

In addition to a single timer, multiple timers may be used in
parallel with different time periods and different associated
count thresholds. For example, this would enable a longer-
term view of per-lane operation to be observed, while also
facilitating shorter per-lane BER threshold detection. The
threshold of the number of sequential errors required in the
time period may also be changed.

Under the embodiment depicted in flowcharts 2200a-e,
reinitialization of a link in combination with removal of a bad
lane results from detection of a lane exhibiting close-spaced
errors. However, this is not meant to be limiting, as alane may
be removed in connection with reinitialization of and/or
retraining a link under other conditions, such as when exiting
via exit block 2232 following detection of sequential LTP
CRC errors. For example, when the link is reinitialized the per
lane error counters are checked to see if an error count has
exceeded some threshold. Ifit has, that lane is marked bad and
is not active when the link is returns to active operation.

Another aspect of reliable LTP transmission with implicit
ACKs is a mechanism to ensure that an LTP in the replay
buffer is not overwritten prior to an implicit confirmation that
it has been received without errors. In one embodiment this is
facilitated through the use of retry requests and roundtrip

10

15

20

25

30

35

40

45

50

55

60

65

28

markers. As discussed above, in some embodiments the reply
buffer has a fixed size or can be configured to be set to operate
using one of multiple fixed sizes. In addition, a pair of link
peers may employ replay buffers of different sizes.

Under use of a fixed-size replay buffer, the replay buffer
will generally be sized to hold a number of LTPs that is greater
than the number of L'TPs that could be transferred during a
roundtrip traversal of the link, with additional consideration
for various processing latencies. This is the case illustrated in
FIGS. 18a and 185, wherein the replay buffer has 8 slots, and
the number of LTPs that could concurrently be traversing a
roundtrip over the link and the link path in the opposite
direction is approximately 6 or 7 LTPs. As a result, if there is
an error detected at the receiver, the transmitter will receive a
retry request before the copy of the bad LTP in the replay
buffer will be overwritten.

However, for practical reasons, fixed-size replay buffers
are not sized to handle all possibly link lengths. The greater
the length of a link, the greater the number of LTPs that could
be sent out from the replay buffer prior to receiving a retry
request. At some point, the link length will be such that use of
the retry request scheme alone will not ensure that a copy of
a bad LTP in the replay buffer is not overwritten prior to
receiving a retry request for that bad LTP.

This is where use of the roundtrip marker fits in. Returning
to flowchart 2200c¢ at a decision block 2244, a determination
if made to whether the replay of all of the LTPs has completed
without receiving a roundtrip marker. Under the configura-
tion illustrated in FIG. 18¢, there again are 8 FIFO slots in
replay butfer 1806, but the link length is such that 5 LTPs can
be “on the wire” at one time, meaning that at least 10 L'TPs
could be in roundtrip transit and/or being processed at the
receiver. As a result, all of the LTP copies in the replay buffer
could be retransmitted prior to receiving a retry request for
any of the LTPs, resulting in a copy of a potentially bad LTP
being overwritten. This would prevent the bad LTP from
being retransmitted, defeating the purpose of the replay
buffer.

To accommodate this scenario, the transmitter includes
logic to detect whether it has reached the end of the replay
LTPs prior to receiving a roundtrip marker, as shown in deci-
sion block 2244. In essence, this determines whether the
depth of the replay buffer is less than or greater than the
roundtrip duration. Reaching the end of the replay LTPs is
detected by the replay pointer wrapping back to the start
(FIFO slot) of the first replayed LTP.

In FIG. 18¢, the first replayed LTP slot is slot 4, and the
LTPsinslots 4,5, 6,7, 0, 1, 2, and 3 have been sequentially
retransmitted, returning the replay LTP pointer to slot 4 prior
to receiving the first roundtrip marker of a pair of roundtrip
markers 1822a and 18225. This illustrates in example under
which the end of the replay LTPs is reached prior to receiving
a roundtrip marker, indicating that the roundtrip duration is
greater than the depth of the replay buffer. This results in the
answer to decision block 2244 being YES, and the logic
proceeds to a block 2245q¢ in which a Null counter
(Nullcount) n for the transmitter is reset to an integer k. As
depicted by a block 22464 and a decision block 2248 with a
NO result looping back to block 2246a, the transmitter then
proceeds to send one or more Null LTPs to the receiver until
aroundtrip marker or retry request is received. In addition, for
each transmitted Null LTP, Nullcount n is incremented by 1.
As discussed above, a Null LTP is not a reliable LTP, and thus
a copy of a transmitted LTP is not added to the replay buffer.
As a result, the copy of the bad LTP that resulted in the retry
request will be guaranteed to not be overwritten prior to
receiving a retry request.

US 9,325,449 B2

29

Once reception of a roundtrip marker is determined in
decision block 22484, the logic proceeds to a block 2250 in
which the transmitter is returned to normal transfer mode, as
also depicted by areturn to Link TransferActive.normal in the
transmitter state machine 2300 of FIG. 234, while using
Nullcount n value for each cycle through the replay buffer to
determine how many Null LTPs to send once the end of the
replay buffer is reached. For example, let’s say Nullcount n
reached 4. As a result, every time the replay buffer FIFO slot
reached slot 7, the transmitter would send out 4 Null LTPs.
Under one embodiment retry requests and roundtrip markers
have the highest priority and are never preempted, and thus
the use of transmitting a number of Null LTPs defined by
Nullcount n will ensure a copy of a bad LTP will not be
overwritten prior to receiving a retry request for that bad LTP.
As an option, Nullcount n can be reset to a value k>0 in block
2245 to provide a safety margin, such that k extra Null LTPs
will be transmitted at the end of each cycle through the replay
buffer. An inherent advantage of the Nullcount scheme is that
it can be implemented to support a link of substantially any
length (recognizing there is a practical limit to the length of'a
physical link, and that manufacture and/or implementation of
a link having a length beyond this limit would either not be
possible or realistic).

Returning to decision block 2224, if a roundtrip marker has
been received prior to reaching the first FIFO slot, the answer
to decision block 2244 is NO, and the logic proceeds to a
block 22455 in which Nullcount n is reset to an integer m. As
depicted by a block 22465 and a decision block 2249 with a
NO result looping back to block 22465, the transmitter then
proceeds to continue replaying L'TPs to the receiver the until
the buffer pointer has wrapped and returned to its starting slot
or Nullcount n has reached zero, wherein a Nullcount count-
down begins with m and is decremented by 1 for each retrans-
mitted reliable LTP. In response to a YES result for decision
block 2249, the logic exits this Nullcount countdown loop and
proceeds to block 2250.

The use of the Nullcount countdown results in a safety
margin of approximately m LTP transfer cycles for configu-
rations under which the buffer depth is greater than but within
m LTP transfer cycles of the roundtrip duration. For example,
suppose that the buffer depth is 32 slots and the roundtrip
duration is equal to 30 LTP transfer cycles, and m=5. In this
case, m would be 3 when the logic exited the countdown loop.
This means that every time replay the buffer wraps back to its
start (slot 0), 3 extra Null LTPs would be transmitted prior to
overwriting the LTP in slot 0. Since the buffer depth is 32
slots, the number of LTP cycles between replay buffer slots
being overwritten is 35, or 5 more than the roundtrip duration.

In response to detection of a bad lane, a link may be
operated in a degraded state with a reduced number of active
lanes. Moreover, this link degraded state may cascade, such
that a link may be operated in an sequences such as starting
with four active lanes, detecting a first bad lane and removing
the bad lane, leading to a link operation with three active
lanes, detecting a second bad lane and removing the second
bad lane, leading to a link operation with two active lanes.
This cascade could continue with detection of a third bad
lane, leading to link operation over the single remaining good
lane. It is also noted that a link may be operated in an asym-
metrical configuration, such that one transmit direction may
use a different number of active lanes than the other transmit
direction.

FIG. 26 depicts the XFR groups for operating a link with
three active lanes, according to one embodiment. In this
instance, there are three XFR groups GO, G1, and G2, and the
corresponding CRCs are CRC-G0, CRC-G1, and CRC-G2.

30

40

45

30

Since the LTP sequence only has a single state with the XFR
pattern being repeated without lane changes, the same XFR
groups are transmitted over the same respective lanes. As a
result, the per-lane CRC comparisons can be made on a per-
lane basis, or otherwise the per XFR-group basis does not
consider an LTP sequence state. Under 3 lanes, there are 11
32-bit transfers for each lane, resulting in 352 bits transmitted
over each lane per standard detection LTP. In one embodi-
ment, a 16-bit per-lane CRC is used when operating under
three active lanes.

FIG. 27 depicts the XFR groups for operating a link with
two active lanes, according to one embodiment. Since there
are 33 32-bit transfers per LTP, the number of bits transferred
over each of lanes 0 and 1 for an LTP transmit stream will
alternate between 512 and 544 bits. As a result, a per XFR-
group per-lane CRC comparison scheme is implemented
using two LTP sequence states. In addition, a 16-bit per-lane
CRC is used in one embodiment.

FIG. 28 depicts the XFR groups for operating a link with a
single active lane, according to one embodiment. Since there
is only a single lane over which LTP data is sent, it is the only
lane that could be errant. As a result, there is no need to
perform a per-lane CRC comparison. However, under a lane
degradation scenarios under which a link with more than a
single lane is degraded to operating under a single lane, a
per-lane CRC calculation may still be calculated for the single
lane, since this may be implemented in hardware in a manner
under which it is always performed. In this instance, the
per-lane CRC calculations are simply ignored.

As discussed above, under embodiments disclosed herein,
links support reliable data transmission without use of
explicit ACKs. Although an LTP cannot be lost when being
transmitted across a link (absent an event such as a cable
being cut), it can contain errors. Recall that the implicit
acknowledgement scheme is implemented via the lack of
receiving a retry request at the transmitter within a time
period that is at least as long as the time it takes to complete
a roundtrip from a transmitter to a receiver and back to the
transmitter. Since the retry request is sent over a different set
of lanes than the transmitted data, it is possible that a single
retry request could have an error (identified by the CRC
check), and thus be tossed. As a result, a receive side link
interface could be trying to inform the transmit-side link
interface that it received an errant LTP, but the notification
(indicated by the retry request) would be tossed. This is where
the sending of a sequential pair of RetryReql.TPs and pairs of
other null LTPs (e.g., RetryMrkr0, RetryMrkr1) helps facili-
tate the implicit ACK scheme.

First, since these are null LTPs, they are not stored in a
replay buffer, and thus not available for retransmission. How-
ever, by sending a sequential pair of null LTPs it is guaranteed
that one of two events will result: 1) successful receipt of at
least one or the two null LTPs without errors; or 2) if both
LTPs have errors, this will be detected as sequential L'TP
errors, triggering retraining of the link. During (re)training,
the training sequence is performed by both transmitter-re-
ceiver pairs of the link partners, thus proper operations for the
link in both directions is verified before returning the link to
active operation. When the retraining is complete, the trans-
mit-sides waits (sending null LTPs in the meantime) for the
guaranteed retry request from the receive-side before starting
to send new (or continuing replay of) LTPs after sending the
retry marker(s). Another benefit is sending a pair of these null
packets is that increases the likelihood that at least one of the
LTPs will be good.

FIG. 29 shows a node 2900 having an exemplary configu-
ration comprising a host fabric interface 2902 including a

US 9,325,449 B2

31

fabric port 2904 coupled to a processor 2906, which in turn is
coupled to memory 2908. As shown in FIG. 1, system nodes
may have various configurations, such as but not limited to
those shown by discrete single node platform 106, virtualized
platform 110, multi-node platform 116 and integrated single
node platform 120. Generally, each node configuration will
include at least one processor, memory, and at least one HFI
having similar components illustrated in FIG. 29.

Fabric port 2904 includes a transmit port 1800 and a
receive port 1802 having a configuration similar to that shown
in FIG. 18a-18c¢, in addition to other circuitry and logic both
shown and not shown in FIG. 29, as discussed below. Trans-
mit port 1800 includes Tx Link Fabric Sub-layer circuitry and
logic 2910 including a transmit buffer (Tbuf) partitioned into
aplurality of transmit VL buffers, Tx Link Transfer Sub-layer
circuitry and logic 2912, and Tx PHY circuitry and logic 2914
including four transmitters 2916, and a Tx Link Control
Block 1804. Receive port 1802 includes Rx Link Fabric Sub-
layer circuitry and logic 2918 including a receive buffer
(Rbuf) partitioned into plurality of receive VL buffers, Rx
Link Transfer Sub-layer circuitry and logic 2920, and Rx
PHY circuitry and logic 2922 including four receivers 2924,
and an Rx Link Control Block 1805.

Tx Link Fabric Sub-Layer circuitry and logic 2910 is con-
figured to implement the transmit-side aspects of the Link
Fabric Sub-Layer operations described herein. In addition to
the transmit buffer and transmit VL buffers illustrated in FIG.
29, components and blocks for facilitating these operations
that are not illustrated include a Fabric Packet build block that
includes an [.4 encapsulation sub-block that is configured to
perform [.4 encapsulation of Ethernet, InfiniBand, and native
architecture packets, arbitration logic, and a credit manager.
Additionally a portion of the logic for facilitating QoS opera-
tions is implemented at the Link Fabric Sub-Layer (also not
shown).

Tx Link Transfer Sub-Layer circuitry and logic 2912 is
configured to implement the transmit-side aspects of the Link
Transfer Sub-Layer operations described herein. These
include various components and logic blocks for bundling
LTPs, preparing an LTP stream for handoff to the Tx PHY,
and supporting replay of LTPs in response to RetryRegs,
including retry logic, an LTP bundling block, a replay buffer,
and NxtWrLTP and NxtTxLTP pointers (all not shown). In
addition, a portion of Tx Link Control Block 1804 and the
QoS functions are implemented for the Tx Link Transfer
Sub-Layer.

Tx PHY circuitry and logic 2914 is illustrated in a simpli-
fied form that includes four transmitters 2916 and a portion of
Tx Link Control Block 1804. Generally, transmitters 2916
may comprise electrical or optical transmitters, depending on
the PHY layer configuration of the link. It will be understood
by those having skill in the networking arts that a Tx PHY
circuitry and logic block will including additional circuitry
and logic for implementing transmit-side PHY layer opera-
tions that are not shown for clarity. This including various
sub-layers within a PHY layer that are used to facilitate vari-
ous features implemented in connection with high-speed
interconnect to reduce errors and enhance transmission char-
acteristics.

Rx Link Fabric Sub-Layer circuitry and logic 2918 is con-
figured to implement the receive-side aspects of the Link
Fabric Sub-Layer operations described herein. In addition to
the illustrated receive buffer and receive VL buffers, non-
illustrated components and blocks for facilitating these
operations include a Fabric Packet reassembly block includ-
ing an [.4 packet de-capsulation sub-block, a credit return
block, and a portion of QoS receive-side logic.

10

15

20

25

30

35

40

45

50

55

60

65

32

Rx Link Transfer Sub-Layer circuitry and logic 2920 is
configured to implement the receive-side aspects of the Link
Transfer Sub-Layer operations described herein. These
include various components and logic blocks for unbundling
LTPs, detecting LTP CRC and per-lane CRC errors, receiver
tossing mode and associated operations, and QoS operations,
such as those shown in FIGS. 18a-18¢ and discussed above.

Rx PHY circuitry and logic 2922 is illustrated in a simpli-
fied form that includes four receivers 2924 and a portion of Rx
Link Control Block 1805. Generally, receivers 2924 may
comprise electrical or optical transmitters, depending on the
PHY layer configuration of the link, and will be configured to
receive signals transmitter over the link from transmitters
2916. It will be understood by those having skill in the net-
working arts that an Rx PHY circuitry and logic block will
including additional circuitry and logic for implementing
receive-side PHY layer operations that are not shown for
clarity. This including various sub-layers within a PHY layer
that are used to facilitate various features implemented in
connection with high-speed interconnect to reduce errors and
enhance transmission characteristics.

HFI 2902 further includes a transmit engine 2926 and a
receive engine 2928 coupled to a PCle (Peripheral Compo-
nent Interconnect Express) interface (I/F) 2930. Transmit
engine 2926 includes transmit buffers 2932 in which L4 pack-
ets (e.g., Ethernet packets including encapsulated TCP/IP
packets, InfiniBand packets) and/or Fabric Packets are buff-
ered. In one embodiment, all or a portion of the memory for
transmit bufters 2932 comprises memory-mapped input/out-
put (MMIO) address space, also referred to a programmed 1O
(PIO) space. MMIO enables processor 2906 to perform direct
writes to transmit buffers 2932, e.g., via direct memory access
(DMA writes).

Receive engine 2928 includes receive buffers 2934 and a
DMA engine 2936. Receive buffers are used to buffer the
output of receive port 1802, which may include Fabric Pack-
ets and/or .4 packets. DMA engine 2936 is configured to
perform DMA writes to copy the packet data from receive
buffers 2934 to memory 2908 and/or one of the memory
cache levels in processor 2906. For example, in some embodi-
ments packet header data is DMA’ed to cache, while packet
payload data is DMA’ed to memory.

Processor 2906 includes a CPU 2938 including a plurality
of processor cores 2940, each including integrated Level 1
and Level 2 (LL1/1.2) caches and coupled to an coherent inter-
connect 2942. Also coupled to coherent interconnect 2942 is
a memory interface 2944 coupled to memory 2908, an inte-
grated input/output block (I10) 2946, and a Last Level Cache
(LLC) 2948. 11O 2946 provides an interface between the
coherent domain employed by the processor cores, memory,
and caches, and the non-coherent domain employed for 10
components and 1O interfaces, including a pair of PCle Root
Complexes (RCs) 2950 and 2952. As is well-known in the art,
a PCle RC sits at the top of a PCle interconnect hierarchy to
which multiple PCle interfaces and PCle devices may be
coupled, as illustrated by PCle interfaces 2954, 2956, 2958,
and 2960. As shown, PCle 2956 is coupled to PCle interface
2930 of HFT 2902.

In some embodiments, such as illustrated in FIG. 29, pro-
cessor 2912 employs an SoC architecture. In other embodi-
ments, PCle-related components are integrated in an 10
chipset or the like that is coupled to a processor. In yet other
embodiments, processor 2912 and one or more HFIs 2902 are
integrated on an SoC, such as depicted by the dashed outline
of SoC 2962.

As further illustrated in FIG. 29, software applications
2964 and Fabric vNIC 2966 comprise software components

US 9,325,449 B2

33

running on one or more of processor cores 2940 or one or
more virtual machines hosted by an operating system running
on processor 2906. In addition to these software components,
there are additional software components and buffers imple-
mented in memory 2908 to facilitate data transfers between
memory 2908 (including applicable cache levels) and trans-
mit engine 2926 and receive engine 2934.

In general, the circuitry, logic and components depicted in
the figures herein may also be implemented in various types
of integrated circuits (e.g., semiconductor chips) and mod-
ules, including discrete chips, SoCs, multi-chip modules, and
networking/link interface chips including support for mul-
tiple network interfaces. Also, as used herein, circuitry and
logic to effect various operations may be implemented via
one or more of embedded logic, embedded processors, con-
trollers, microengines, or otherwise using any combination of
hardware, software, and/or firmware. For example, the opera-
tions depicted by various logic blocks and/or circuitry may be
effected using programmed logic gates and the like, including
but not limited to ASICs, FPGAs, IP block libraries, or
through one or more of software or firmware instructions
executed on one or more processing elements including pro-
cessors, processor cores, controllers, microcontrollers,
microengines, etc.

In addition, aspects of embodiments of the present descrip-
tion may be implemented not only within a semiconductor
chips, SoCs, multichip modules, etc., but also within non-
transient machine-readable media. For example, the designs
described above may be stored upon and/or embedded within
non-transient machine readable media associated with a
design tool used for designing semiconductor devices.
Examples include a netlist formatted in the VHSIC Hardware
Description Language (VHDL) language, Verilog language
or SPICE language, or other Hardware Description Lan-
guage. Some netlist examples include: a behavioral level
netlist, a register transfer level (RTL) netlist, a gate level
netlist and a transistor level netlist. Machine-readable media
also include media having layout information such as a GDS-
11 file. Furthermore, netlist files or other machine-readable
media for semiconductor chip design may be used in a simu-
lation environment to perform the methods of the teachings
described above.

Although some embodiments have been described in ref-
erence to particular implementations, other implementations
are possible according to some embodiments. Additionally,
the arrangement and/or order of elements or other features
illustrated in the drawings and/or described herein need not be
arranged in the particular way illustrated and described.
Many other arrangements are possible according to some
embodiments.

In each system shown in a figure, the elements in some
cases may each have a same reference number or a different
reference number to suggest that the elements represented
could be different and/or similar. However, an element may
be flexible enough to have different implementations and
work with some or all of the systems shown or described
herein. The various elements shown in the figures may be the
same or different. Which one is referred to as a first element
and which is called a second element is arbitrary.

Italicized letters, such as ‘n’, ‘m’, ‘k’, etc. in the foregoing
detailed description and the claims are used to depict an
integer number, and the use of a particular letter is not limited
to particular embodiments. Moreover, the same letter may be
used in separate claims to represent separate integer numbers,
or different letters may be used. In addition, use of a particular

15

25

40

45

60

65

34

letter in the detailed description may or may not match the
letter used in a claim that pertains to the same subject matter
in the detailed description.
In the description and claims, the terms “coupled” and
“connected,” along with their derivatives, may be used. It
should be understood that these terms are not intended as
synonyms for each other. Rather, in particular embodiments,
“connected” may be used to indicate that two or more ele-
ments are in direct physical or electrical contact with each
other. “Coupled” may mean that two or more elements are in
direct physical or electrical contact. However, “coupled” may
also mean that two or more elements are not in direct contact
with each other, but yet still co-operate or interact with each
other.
An embodiment is an implementation or example of the
inventions. Reference in the specification to “an embodi-
ment,” “one embodiment,” “some embodiments,” or “other
embodiments” means that a particular feature, structure, or
characteristic described in connection with the embodiments
is included in at least some embodiments, but not necessarily
all embodiments, of the inventions. The various appearances
“an embodiment,” “one embodiment,” or “some embodi-
ments” are not necessarily all referring to the same embodi-
ments.
Not all components, features, structures, characteristics,
etc. described and illustrated herein need be included in a
particular embodiment or embodiments. If the specification
states a component, feature, structure, or characteristic
“may”, “might”, “can” or “could” be included, for example,
that particular component, feature, structure, or characteristic
is not required to be included. If the specification or claim
refers to “a” or “an” element, that does not mean there is only
one of the element. If the specification or claims refer to “an
additional” element, that does not preclude there being more
than one of the additional element.
The above description of illustrated embodiments of the
invention, including what is described in the Abstract, is not
intended to be exhaustive or to limit the invention to the
precise forms disclosed. While specific embodiments of, and
examples for, the invention are described herein for illustra-
tive purposes, various equivalent modifications are possible
within the scope of the invention, as those skilled in the
relevant art will recognize.
These modifications can be made to the invention in light of
the above detailed description. The terms used in the follow-
ing claims should not be construed to limit the invention to the
specific embodiments disclosed in the specification and the
drawings. Rather, the scope of the invention is to be deter-
mined entirely by the following claims, which are to be con-
strued in accordance with established doctrines of claim inter-
pretation.
What is claimed is:
1. An apparatus, comprising:
a link interface including,
a receive port comprising a plurality of receive lanes, each
configured to receive a respective bitstream of a plurality
of bitstreams transmitted in parallel from a transmit port
of a link interface peer; and
circuitry and logic to,
process the plurality of bitstreams as they are received
and extract data comprising link packets transmitted
from the link interface peer;

detect a bad received link packet; and

detect an errant receive lane that caused the bad received
link packet.

2. The apparatus of claim 1, wherein detection of a bad
received link packet is facilitated through use of a transmitted

2 <

US 9,325,449 B2

35

data integrity check value transmitted with each link packet,
and wherein each of the bitstreams transmitted over each lane
do not include an individual transmitted data integrity check
value for that bitstream.
3. The apparatus of claim 1, wherein the circuitry and logic
to detect an errant receive lane includes circuitry and logic to:
calculate, for each receive lane, a data integrity check value
over data received on that lane corresponding to a first
transmission of a link packet, the first transmission of the
link packet resulting in a bad received link packet;

calculate, for each receive lane, a data integrity check value
over data received on that lane corresponding to a
retransmission of the link packet; and

compare the data integrity check values for the first trans-

mission and retransmission of the link packet on a per-
lane basis to determine which receive lane is errant.

4. The apparatus of claim 1, wherein link packets are trans-
mitted using a sequence under which at least one receive lane
receives a different amount of data than at least one other
receive lane in connection with receipt of data for a given link
packet, and wherein a lane or lanes receiving the different
amount of data changes depending on the state of the
sequence when the link packet is transmitted.

5. The apparatus of claim 4, wherein during receipt of data
for a link packet, the bitstream data received on a given lane
comprises a transfer group that is dependent on the state of the
sequence when the link packet is transmitted, wherein the
circuitry and logic to detect an errant receive lane includes
circuitry and logic to:

calculate, for each receive lane, a data integrity check value

over data comprising a first transfer group received on
that lane corresponding to a first transmission of a link
packet, the first transmission of the link packet being
transmitted under a first sequence state and resulting in a
bad received link packet;

calculate, for each receive lane, a data integrity check value

over data comprising a second transfer group received
onthat lane corresponding to a retransmission of the link
packet that is transmitted under a second sequence state;
and

compare the data integrity check values for the first trans-

mission and retransmission of the link packet on a per-
transfer group basis to determine which receive lane is
errant.

6. The apparatus of claim 1, further comprising circuitry
and logic to:

receive indicia from the link interface peer indicating a link

packet corresponding to the bad link packet is being or is
to be retransmitted; and

employ the indicia to detect reception of the retransmitted

link packet.

7. The apparatus of claim 1, further comprising circuitry
and logic to:

detect receipt of a sequence of bad link packets; and

determine a receive lane causing at least one of the bad link

packets in the sequence to be errant.

8. The apparatus of claim 7, further comprising circuitry
and logic to,

detect occurrences of receiving sequences of bad link pack-

ets; and

detect a frequency of a lane causing errors leading to the

occurrences.

9. The apparatus of claim 1, further comprising a transmit
port comprising a plurality of transmit lanes and configured to
transmit data comprising link packets via a plurality of bit-
streams that are transmitted in parallel via the plurality of
transmit lanes to a receive port of the link interface peer, and

20

35

40

45

60

36

wherein the transmit port includes circuitry and logic to send
a retransmission request via the transmit port to the link
interface peer in response to detection of a bad link packet, the
retransmission request including indicia that is configured to
be processed by the link interface peer to identify the bad link
packet.

10. The apparatus of claim 1, wherein the link interface
further includes a transmit port and the link interface peer
includes areceive port and the link interface and link interface
peer are configured to support bi-directional communication
over a link comprising a pair of unidirectional links from a
transmit port to a receive port comprising n lanes, further
comprising circuitry and logic to:

identify an errant receive lane;

perform link interface-side operations to re-initialize
operation of the link under a degraded link configuration
employing n-1 receive lanes not including the errant
lane.

11. The apparatus of claim 10, wherein the errant lane
comprises a first errant lane, the apparatus further comprising
circuitry and logic to:

receive link packet data via the n-1 receive lanes corre-
sponding to link packets transmitted from the transmit
port of the link interface peer;

identify a second errant receive lane from among the n-1
receive lanes;

perform link interface-side operations to re-initialize
operation of the link under a degraded link configuration
employing n-2 receive lanes not including the first and
errant second errant lanes.

12. An apparatus, comprising:

a link interface including,

a receive port comprising a plurality of receive lanes, each
configured to receive a respective bitstream of a plurality
of bitstreams transmitted in parallel from a transmit port
of a link interface peer; and

circuitry and logic to,
process the plurality of bitstreams and extract data com-

prising link packets transmitted from the link inter-
face peer;
calculate a per-lane data integrity check value over data
that is received on each receive lane for the link
packet;
detect received data for a link packet is bad; and in
response thereto,
store per-lane data integrity check values for the bad
link packet;
receive a retransmitted link packet corresponding to
the bad link packet;
recalculate a per-lane data integrity check value over
data that is received on each receive lane for the
retransmitted link packet; and
compare stored per-lane data integrity check values
with the recalculated per-lane data integrity check
values to detect an errant receive lane.

13. The apparatus of claim 12, wherein each link packet
includes a transmitted cyclic redundancy check (CRC) value
calculated at the link interface peer, further comprising cir-
cuitry and logic to calculate a received CRC value based on
received data for the link packet and compare the received
CRC value with the transmitted CRC value to determine if the
link packet is bad.

14. The apparatus of claim 12, wherein link packets are
transmitted using a sequence under which at least one receive
lane receives a different amount of data than at least one other
receive lane in connection with receipt of data for a given link
packet, and wherein a lane or lanes receiving the different

US 9,325,449 B2

37

amount of data changes depending on the state of the
sequence when the link packet is transmitted.

15. The apparatus of claim 14, wherein during receipt of
data for a link packet, the bitstream data received on a given
lane comprises a transfer-group that is dependent on the state
of the sequence when the link packet is transmitted, and
wherein the states of the sequence when the link packet is
transmitted and when the link packet is retransmitted are
different, the apparatus further comprising circuitry and logic
to:

store the per-lane integrity check values on a per transfer-

group basis; and

compare per transfer-group integrity check values for the

transmitted packet and the retransmitted packet to iden-
tify an errant lane.

16. The apparatus of claim 12, further comprising circuitry
and logic to:

in response to detection of a bad link packet;

change a receive mode from a normal mode to a discard

mode under which received link packets are discarded;
receive indicia indicating a link packet corresponding to
the bad link packet is to be retransmitted; and

return the receive mode to the normal mode in preparation

for receiving the retransmitted link packet.

17. The apparatus of claim 12, further comprising circuitry
and logic to:

in response to detection of a bad link packet;

change a receive mode from a normal mode to a discard

mode under which received link packets are discarded;
detect n sequential bad link packets are received; and
initiate one of a link retraining or link initialization process.

18. The apparatus of claim 17, further comprising circuitry
and logic to determine a receive lane causing at least one of
the n sequential bad link packets to be bad.

19. The apparatus of claim 12, wherein the link interface
further includes a transmit port and the link interface peer
includes areceive port and the link interface and link interface
peer are configured to support bi-directional communication
over a link comprising a pair of unidirectional links from a
transmit port to a receive port comprising n lanes, further
comprising circuitry and logic to:

identify an errant receive lane;

perform link interface-side operations to re-initialize

operation of the link under a degraded link configuration
employing n-1 receive lanes not including the errant
lane.

20. The apparatus of claim 19, wherein the errant lane
comprises a first errant lane, the apparatus further comprising
circuitry and logic to:

receive link packet data via the n-1 receive lanes corre-

sponding to link packets transmitted from the link inter-
face peer;

calculate a per-lane data integrity check value over data

that is received on each of the n -1 receive lanes for the
link packet;

detect received data for alink packet is bad; and inresponse

thereto,

store per-lane data integrity check values for the bad link
packet for each of the n-1 receive lanes;

receive a retransmitted link packet associated with the
link packet;

recalculate a per-lane data integrity check value over
data that is received on each of the n-1 receive lane for
the retransmitted link packet;

38

compare stored per-lane data integrity check values with
the recalculated per-lane data integrity check values
to detect a second errant receive lane from among the
n-lreceive lanes; and
5 perform link interface-side operations to re-initialize
operation of the link under a degraded link configu-
ration employing n-2 receive lanes not including the
first and errant second errant lanes.
21. A method, comprising:
receiving, at a receive port of a link interface via a plurality
of receive lanes, a respective bitstream of a plurality of
bitstreams transmitted in parallel from a transmit port of
a link interface peer;
processing the plurality of bitstreams as they are received
and extracting data comprising link packets transmitted
from the link interface peer;
detecting a bad received link packet; and
detecting an errant receive lane that caused the bad
received link packet,
wherein detection of a bad received link packet is facili-
tated through use of a transmitted data integrity check
value transmitted with each link packet, and wherein
each of the bitstreams transmitted over each lane do not
include an individual transmitted data integrity check
value for that bitstream.
22. The method of claim 21, wherein detection of the errant
receive lane comprises,
processing the plurality of bitstreams and extracting data
comprising link packets transmitted from the link inter-
face peer;
calculating a per-lane or per transfer group data integrity
check value over data that is received on each receive
lane for the link packet;
detecting received data for a link packet is bad; and in
response thereto,
storing per-lane or per transfer group data integrity
check values for the bad link packet;
receiving a retransmitted link packet corresponding to
the bad link packet;
recalculating a per-lane or per transfer group data integ-
rity check value over data that is received on each
receive lane for the retransmitted link packet; and
comparing stored per-lane or per transfer group data
integrity check values with the recalculated per-lane
data integrity check values to detect an errant receive
lane.
23. The method of claim 21, wherein detection of the errant
50 lane comprises:
calculating, for each receive lane, a data integrity check
value over data received on that lane corresponding to a
first transmission of a link packet, the first transmission
of the link packet resulting in a bad received link packet;
calculating, for each receive lane, a data integrity check
value over data received on that lane corresponding to a
retransmission of the link packet; and
comparing the data integrity check values for the first trans-
mission and retransmission of the link packet on a per-
lane basis to determine which receive lane is errant.
24. The method of claim 21, wherein link packets are
transmitted using a sequence under which at least one receive
lane receives a different amount of data than at least one other
receive lane in connection with receipt of data for a given link
5 packet, and wherein a lane or lanes receiving the different
amount of data changes depending on the state of the
sequence when the link packet is transmitted.

10

15

20

25

30

40

45

o

US 9,325,449 B2

39

25. The method of claim 24, wherein during receipt of data
for a link packet, the bitstream data received on a given lane
comprises a transfer group that is dependent on the state of the
sequence when the link packet is transmitted, wherein the
detecting an errant receive lane comprises:

calculating, for each receive lane, a data integrity check

value over data comprising a first transfer group received
on that lane corresponding to a first transmission of a
link packet, the first transmission of the link packet
being transmitted under a first sequence state and result-
ing in a bad received link packet;

calculating, for each receive lane, a data integrity check

value over data comprising a second transfer group
received on that lane corresponding to a retransmission
of the link packet that is transmitted under a second
sequence state; and

comparing the data integrity check values for the first trans-

mission and retransmission of the link packet on a per-
transfer group basis to determine which receive lane is
errant.

26. The method of claim 21, further comprising:

receiving a retry marker from the link interface peer indi-

cating a retransmitted link packet corresponding to the
bad link packet will follow the retry marker by n link
packets; and

counting down from n following receipt of the retry marker

to detect reception of the retransmitted link packet.

27. The method of claim 21, further comprising:

detecting receipt of sequential bad link packets; and

determining a receive lane causing at least one of the
sequential bad link packets to be errant.

10

15

20

25

30

40

28. The method of claim 27, further comprising:

detecting occurrences of sequential bad link packets;

detecting a frequency of a lane causing errors leading to the
occurrences; and

if the frequency of a lane causing errors leading to occur-

rences of sequential bad link packets reaches a thresh-
old, re-initializing the link with the lane causing the
errors removed.

29. The method of claim 21, wherein the link interface
further includes a transmit port and the link interface peer
includes areceive port and the link interface and link interface
peer are configured to support bi-directional communication
over a link comprising a pair of unidirectional links from a
transmit port to a receive port comprising n lanes, further
comprising circuitry and logic to:

identifying an errant receive lane;

performing link interface-side operations to re-initialize

operation of the link under a degraded link configuration
employing n-1 receive lanes not including the errant
lane.

30. The method of claim 29, wherein the errant lane com-
prises a first errant lane, the method further comprising:

receiving link packet data via the n-1 receive lanes corre-

sponding to link packets transmitted from the transmit
port of the link interface peer;
identifying a second errant receive lane from among the
n-1 receive lanes;

performing link interface-side operations to re-initialize
operation of the link under a degraded link configuration
employing n-2 receive lanes not including the first and
second errant lanes.

#* #* #* #* #*

